arm-trusted-firmware/common/psci/psci_common.c

535 lines
18 KiB
C
Raw Normal View History

2013-10-25 09:08:21 +01:00
/*
* Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
2013-10-25 09:08:21 +01:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
#include <runtime_svc.h>
2013-10-25 09:08:21 +01:00
/*******************************************************************************
* Arrays that contains information needs to resume a cpu's execution when woken
* out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next
* free index in the 'psci_ns_entry_info' & 'psci_secure_context' arrays. Each
* cpu is allocated a single entry in each array during startup.
******************************************************************************/
secure_context psci_secure_context[PSCI_NUM_AFFS];
ns_entry_info psci_ns_entry_info[PSCI_NUM_AFFS];
unsigned int psci_ns_einfo_idx;
/*******************************************************************************
* Grand array that holds the platform's topology information for state
* management of affinity instances. Each node (aff_map_node) in the array
* corresponds to an affinity instance e.g. cluster, cpu within an mpidr
******************************************************************************/
aff_map_node psci_aff_map[PSCI_NUM_AFFS]
__attribute__ ((section("tzfw_coherent_mem")));
/*******************************************************************************
* In a system, a certain number of affinity instances are present at an
* affinity level. The cumulative number of instances across all levels are
* stored in 'psci_aff_map'. The topology tree has been flattenned into this
* array. To retrieve nodes, information about the extents of each affinity
* level i.e. start index and end index needs to be present. 'psci_aff_limits'
* stores this information.
******************************************************************************/
aff_limits_node psci_aff_limits[MPIDR_MAX_AFFLVL + 1];
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
plat_pm_ops *psci_plat_pm_ops;
/*******************************************************************************
* Simple routine to retrieve the maximum affinity level supported by the
* platform and check that it makes sense.
******************************************************************************/
int get_max_afflvl()
{
int aff_lvl;
aff_lvl = plat_get_max_afflvl();
assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);
return aff_lvl;
}
/*******************************************************************************
* Simple routine to set the id of an affinity instance at a given level in the
* mpidr.
******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
unsigned char aff_inst,
int aff_lvl)
{
unsigned long aff_shift;
assert(aff_lvl <= MPIDR_AFFLVL3);
/*
* Decide the number of bits to shift by depending upon
* the affinity level
*/
aff_shift = get_afflvl_shift(aff_lvl);
/* Clear the existing affinity instance & set the new one*/
mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
mpidr |= aff_inst << aff_shift;
return mpidr;
}
/*******************************************************************************
* Simple routine to determine whether an affinity instance at a given level
* in an mpidr exists or not.
******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
aff_map_node *node;
node = psci_get_aff_map_node(mpidr, level);
if (node && (node->state & PSCI_AFF_PRESENT))
return PSCI_E_SUCCESS;
else
return PSCI_E_INVALID_PARAMS;
}
/*******************************************************************************
* Simple routine to determine the first affinity level instance that is present
* between the start and end affinity levels. This helps to skip handling of
* absent affinity levels while performing psci operations.
* The start level can be > or <= to the end level depending upon whether this
* routine is expected to search top down or bottom up.
******************************************************************************/
int psci_get_first_present_afflvl(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
aff_map_node **node)
{
int level;
/* Check whether we have to search up or down */
if (start_afflvl <= end_afflvl) {
for (level = start_afflvl; level <= end_afflvl; level++) {
*node = psci_get_aff_map_node(mpidr, level);
if (*node && ((*node)->state & PSCI_AFF_PRESENT))
break;
}
} else {
for (level = start_afflvl; level >= end_afflvl; level--) {
*node = psci_get_aff_map_node(mpidr, level);
if (*node && ((*node)->state & PSCI_AFF_PRESENT))
break;
}
}
return level;
}
/*******************************************************************************
* Recursively change the affinity state between the current and target affinity
* levels. The target state matters only if we are starting from affinity level
* 0 i.e. a cpu otherwise the state depends upon the state of the lower affinity
* levels.
******************************************************************************/
int psci_change_state(unsigned long mpidr,
int cur_afflvl,
int tgt_afflvl,
unsigned int tgt_state)
{
int rc = PSCI_E_SUCCESS;
unsigned int state;
aff_map_node *aff_node;
/* Sanity check the affinity levels */
assert(tgt_afflvl >= cur_afflvl);
aff_node = psci_get_aff_map_node(mpidr, cur_afflvl);
assert(aff_node);
/* TODO: Check whether the affinity level is present or absent*/
if (cur_afflvl == MPIDR_AFFLVL0) {
psci_set_state(aff_node->state, tgt_state);
} else {
state = psci_calculate_affinity_state(aff_node);
psci_set_state(aff_node->state, state);
}
if (cur_afflvl != tgt_afflvl)
psci_change_state(mpidr, cur_afflvl + 1, tgt_afflvl, tgt_state);
return rc;
}
/*******************************************************************************
* This routine does the heavy lifting for psci_change_state(). It examines the
* state of each affinity instance at the next lower affinity level and decides
* its final state accordingly. If a lower affinity instance is ON then the
2013-10-25 09:08:21 +01:00
* higher affinity instance is ON. If all the lower affinity instances are OFF
* then the higher affinity instance is OFF. If atleast one lower affinity
* instance is SUSPENDED then the higher affinity instance is SUSPENDED. If only
* a single lower affinity instance is ON_PENDING then the higher affinity
* instance in ON_PENDING as well.
******************************************************************************/
unsigned int psci_calculate_affinity_state(aff_map_node *aff_node)
{
int ctr;
unsigned int aff_count, hi_aff_state;
unsigned long tempidr;
aff_map_node *lo_aff_node;
/* Cannot calculate lowest affinity state. It is simply assigned */
2013-10-25 09:08:21 +01:00
assert(aff_node->level > MPIDR_AFFLVL0);
/*
* Find the number of affinity instances at level X-1 e.g. number of
* cpus in a cluster. The level X state depends upon the state of each
* instance at level X-1
*/
hi_aff_state = PSCI_STATE_OFF;
aff_count = plat_get_aff_count(aff_node->level - 1, aff_node->mpidr);
for (ctr = 0; ctr < aff_count; ctr++) {
/*
* Create a mpidr for each lower affinity level (X-1). Use their
* states to influence the higher affinity state (X).
*/
tempidr = mpidr_set_aff_inst(aff_node->mpidr,
ctr,
aff_node->level - 1);
lo_aff_node = psci_get_aff_map_node(tempidr,
aff_node->level - 1);
assert(lo_aff_node);
/* Continue only if the cpu exists within the cluster */
if (!(lo_aff_node->state & PSCI_AFF_PRESENT))
continue;
switch (psci_get_state(lo_aff_node->state)) {
/*
* If any lower affinity is on within the cluster, then
* the higher affinity is on.
*/
case PSCI_STATE_ON:
return PSCI_STATE_ON;
/*
* At least one X-1 needs to be suspended for X to be suspended
* but it is effectively on for the affinity_info call.
2013-10-25 09:08:21 +01:00
* SUSPEND > ON_PENDING > OFF.
*/
case PSCI_STATE_SUSPEND:
hi_aff_state = PSCI_STATE_SUSPEND;
continue;
/*
* Atleast one X-1 needs to be on_pending & the rest off for X
* to be on_pending. ON_PENDING > OFF.
*/
case PSCI_STATE_ON_PENDING:
if (hi_aff_state != PSCI_STATE_SUSPEND)
hi_aff_state = PSCI_STATE_ON_PENDING;
continue;
/* Higher affinity is off if all lower affinities are off. */
case PSCI_STATE_OFF:
continue;
default:
assert(0);
}
}
return hi_aff_state;
}
/*******************************************************************************
* This function retrieves all the stashed information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND
******************************************************************************/
void psci_get_ns_entry_info(unsigned int index)
2013-10-25 09:08:21 +01:00
{
unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
gp_regs *ns_gp_regs;
2013-10-25 09:08:21 +01:00
scr = read_scr();
/* Switch to the non-secure view of the registers */
write_scr(scr | SCR_NS_BIT);
/* Find out which EL we are going to */
id_aa64pfr0 = read_id_aa64pfr0_el1();
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/* Restore endianess */
if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
sctlr |= SCTLR_EE_BIT;
else
sctlr &= ~SCTLR_EE_BIT;
/* Turn off MMU and Caching */
sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);
/* Set the register width */
if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
scr |= SCR_RW_BIT;
else
scr &= ~SCR_RW_BIT;
scr |= SCR_NS_BIT;
if (el_status)
write_sctlr_el2(sctlr);
else
write_sctlr_el1(sctlr);
/* Fulfill the cpu_on entry reqs. as per the psci spec */
write_scr(scr);
write_elr(psci_ns_entry_info[index].eret_info.entrypoint);
/*
* Set the general purpose registers to ~0 upon entry into the
* non-secure world except for x0 which should contain the
* context id & spsr. This is done directly on the "would be"
* stack pointer. Prior to entry into the non-secure world, an
* offset equivalent to the size of the 'gp_regs' structure is
* added to the sp. This general purpose register context is
* retrieved then.
*/
ns_gp_regs = (gp_regs *) platform_get_stack(read_mpidr());
ns_gp_regs--;
memset(ns_gp_regs, ~0, sizeof(*ns_gp_regs));
ns_gp_regs->x0 = psci_ns_entry_info[index].context_id;
ns_gp_regs->spsr = psci_ns_entry_info[index].eret_info.spsr;
2013-10-25 09:08:21 +01:00
}
/*******************************************************************************
* This function retrieves and stashes all the information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
* turning it on or before suspending it.
******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
unsigned long entrypoint,
unsigned long context_id)
{
int rc = PSCI_E_SUCCESS;
unsigned int rw, mode, ee, spsr = 0;
unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
unsigned long el_status;
/* Figure out what mode do we enter the non-secure world in */
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
rw = scr & SCR_RW_BIT;
if (rw) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = MODE_EL2;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = MODE_EL1;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
spsr = DAIF_DBG_BIT | DAIF_ABT_BIT;
spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr <<= PSR_DAIF_SHIFT;
spsr |= make_spsr(mode, MODE_SP_ELX, !rw);
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr |= SCR_RW_BIT;
} else {
/* Check whether aarch32 has to be entered in Thumb mode */
if (entrypoint & 0x1)
spsr = SPSR32_T_BIT;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = AARCH32_MODE_HYP;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = AARCH32_MODE_SVC;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr <<= PSR_DAIF_SHIFT;
if(ee)
spsr |= SPSR32_EE_BIT;
spsr |= mode;
/* Ensure that the CSPR.E and SCTLR.EE bits match */
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
}
psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
psci_ns_entry_info[index].eret_info.spsr = spsr;
psci_ns_entry_info[index].context_id = context_id;
return rc;
}
/*******************************************************************************
* An affinity level could be on, on_pending, suspended or off. These are the
* logical states it can be in. Physically either it is off or on. When it is in
* the state on_pending then it is about to be turned on. It is not possible to
2013-10-25 09:08:21 +01:00
* tell whether that's actually happenned or not. So we err on the side of
* caution & treat the affinity level as being turned off.
******************************************************************************/
inline unsigned int psci_get_phys_state(unsigned int aff_state)
{
return (aff_state != PSCI_STATE_ON ? PSCI_STATE_OFF : PSCI_STATE_ON);
}
unsigned int psci_get_aff_phys_state(aff_map_node *aff_node)
{
unsigned int aff_state;
aff_state = psci_get_state(aff_node->state);
return psci_get_phys_state(aff_state);
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* recurses through all the affinity levels performing generic, architectural,
* platform setup and state management e.g. for a cluster that's been powered
* on, it will call the platform specific code which will enable coherency at
* the interconnect level. For a cpu it could mean turning on the MMU etc.
*
* This function traverses from the lowest to the highest affinity level
* implemented by the platform. Since it's recursive, for each call the
* 'cur_afflvl' & 'tgt_afflvl' parameters keep track of which level we are at
* and which level we need to get to respectively. Locks are picked up along the
* way so that when the lowest affinity level is hit, state management can be
* safely done. Prior to this, each affinity level does it's bookeeping as per
* the state out of reset.
*
* CAUTION: This function is called with coherent stacks so that coherency and
* the mmu can be turned on safely.
******************************************************************************/
unsigned int psci_afflvl_power_on_finish(unsigned long mpidr,
int cur_afflvl,
int tgt_afflvl,
afflvl_power_on_finisher *pon_handlers)
{
unsigned int prev_state, next_state, rc = PSCI_E_SUCCESS;
aff_map_node *aff_node;
int level;
mpidr &= MPIDR_AFFINITY_MASK;;
/*
* Some affinity instances at levels between the current and
* target levels could be absent in the mpidr. Skip them and
* start from the first present instance.
*/
level = psci_get_first_present_afflvl(mpidr,
cur_afflvl,
tgt_afflvl,
&aff_node);
/*
* Return if there are no more affinity instances beyond this
* level to process. Else ensure that the returned affinity
* node makes sense.
*/
if (aff_node == NULL)
return rc;
assert(level == aff_node->level);
/*
* This function acquires the lock corresponding to each
* affinity level so that by the time we hit the highest
* affinity level, the system topology is snapshot and state
* management can be done safely.
*/
bakery_lock_get(mpidr, &aff_node->lock);
/* Keep the old and new state handy */
prev_state = psci_get_state(aff_node->state);
next_state = PSCI_STATE_ON;
/* Perform generic, architecture and platform specific handling */
rc = pon_handlers[level](mpidr, aff_node, prev_state);
if (rc != PSCI_E_SUCCESS) {
psci_set_state(aff_node->state, prev_state);
goto exit;
}
/*
* State management: Update the states if this is the highest
* affinity level requested else pass the job to the next level.
*/
if (aff_node->level != tgt_afflvl) {
rc = psci_afflvl_power_on_finish(mpidr,
level + 1,
tgt_afflvl,
pon_handlers);
} else {
psci_change_state(mpidr, MPIDR_AFFLVL0, tgt_afflvl, next_state);
}
/* If all has gone as per plan then this cpu should be marked as ON */
if (level == MPIDR_AFFLVL0) {
next_state = psci_get_state(aff_node->state);
assert(next_state == PSCI_STATE_ON);
}
exit:
bakery_lock_release(mpidr, &aff_node->lock);
return rc;
}