arm-trusted-firmware/include/plat/common/psci1.0/platform.h

211 lines
9.0 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __PLATFORM_H__
#define __PLATFORM_H__
#include <stdint.h>
PSCI: Add framework to handle composite power states The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
2015-04-07 12:16:56 +01:00
#include <psci.h>
/*******************************************************************************
* Forward declarations
******************************************************************************/
struct meminfo;
struct image_info;
struct entry_point_info;
struct bl31_params;
/*******************************************************************************
* plat_get_rotpk_info() flags
******************************************************************************/
#define ROTPK_IS_HASH (1 << 0)
/*******************************************************************************
* Function declarations
******************************************************************************/
/*******************************************************************************
* Mandatory common functions
******************************************************************************/
uint64_t plat_get_syscnt_freq(void);
int plat_get_image_source(unsigned int image_id,
uintptr_t *dev_handle,
uintptr_t *image_spec);
unsigned long plat_get_ns_image_entrypoint(void);
PSCI: Introduce new platform and CM helper APIs This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
2015-04-09 13:40:55 +01:00
unsigned int plat_my_core_pos(void);
int plat_core_pos_by_mpidr(unsigned long mpidr);
/*******************************************************************************
* Mandatory interrupt management functions
******************************************************************************/
uint32_t plat_ic_get_pending_interrupt_id(void);
uint32_t plat_ic_get_pending_interrupt_type(void);
uint32_t plat_ic_acknowledge_interrupt(void);
uint32_t plat_ic_get_interrupt_type(uint32_t id);
void plat_ic_end_of_interrupt(uint32_t id);
uint32_t plat_interrupt_type_to_line(uint32_t type,
uint32_t security_state);
/*******************************************************************************
* Optional common functions (may be overridden)
******************************************************************************/
PSCI: Introduce new platform and CM helper APIs This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
2015-04-09 13:40:55 +01:00
unsigned long plat_get_my_stack(void);
void plat_report_exception(unsigned long);
int plat_crash_console_init(void);
int plat_crash_console_putc(int c);
/*******************************************************************************
* Mandatory BL1 functions
******************************************************************************/
void bl1_early_platform_setup(void);
void bl1_plat_arch_setup(void);
void bl1_platform_setup(void);
struct meminfo *bl1_plat_sec_mem_layout(void);
/*
* This function allows the platform to change the entrypoint information for
* BL2, after BL1 has loaded BL2 into memory but before BL2 is executed.
*/
void bl1_plat_set_bl2_ep_info(struct image_info *image,
struct entry_point_info *ep);
/*******************************************************************************
* Optional BL1 functions (may be overridden)
******************************************************************************/
void bl1_init_bl2_mem_layout(const struct meminfo *bl1_mem_layout,
struct meminfo *bl2_mem_layout);
/*******************************************************************************
* Mandatory BL2 functions
******************************************************************************/
void bl2_early_platform_setup(struct meminfo *mem_layout);
void bl2_plat_arch_setup(void);
void bl2_platform_setup(void);
struct meminfo *bl2_plat_sec_mem_layout(void);
/*
* This function returns a pointer to the shared memory that the platform has
* kept aside to pass trusted firmware related information that BL3-1
* could need
*/
struct bl31_params *bl2_plat_get_bl31_params(void);
/*
* This function returns a pointer to the shared memory that the platform
* has kept to point to entry point information of BL31 to BL2
*/
struct entry_point_info *bl2_plat_get_bl31_ep_info(void);
/*
* This function flushes to main memory all the params that are
* passed to BL3-1
*/
void bl2_plat_flush_bl31_params(void);
/*
* The next 2 functions allow the platform to change the entrypoint information
* for the mandatory 3rd level BL images, BL3-1 and BL3-3. This is done after
* BL2 has loaded those images into memory but before BL3-1 is executed.
*/
void bl2_plat_set_bl31_ep_info(struct image_info *image,
struct entry_point_info *ep);
void bl2_plat_set_bl33_ep_info(struct image_info *image,
struct entry_point_info *ep);
/* Gets the memory layout for BL3-3 */
void bl2_plat_get_bl33_meminfo(struct meminfo *mem_info);
/*******************************************************************************
* Conditionally mandatory BL2 functions: must be implemented if BL3-0 image
* is supported
******************************************************************************/
/* Gets the memory layout for BL3-0 */
void bl2_plat_get_bl30_meminfo(struct meminfo *mem_info);
/*
* This function is called after loading BL3-0 image and it is used to perform
* any platform-specific actions required to handle the SCP firmware.
*/
int bl2_plat_handle_bl30(struct image_info *bl30_image_info);
/*******************************************************************************
* Conditionally mandatory BL2 functions: must be implemented if BL3-2 image
* is supported
******************************************************************************/
void bl2_plat_set_bl32_ep_info(struct image_info *image,
struct entry_point_info *ep);
/* Gets the memory layout for BL3-2 */
void bl2_plat_get_bl32_meminfo(struct meminfo *mem_info);
/*******************************************************************************
* Optional BL2 functions (may be overridden)
******************************************************************************/
/*******************************************************************************
* Mandatory BL3-1 functions
******************************************************************************/
void bl31_early_platform_setup(struct bl31_params *from_bl2,
void *plat_params_from_bl2);
void bl31_plat_arch_setup(void);
void bl31_platform_setup(void);
struct entry_point_info *bl31_plat_get_next_image_ep_info(uint32_t type);
/*******************************************************************************
* Mandatory PSCI functions (BL3-1)
******************************************************************************/
PSCI: Add framework to handle composite power states The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
2015-04-07 12:16:56 +01:00
int plat_setup_psci_ops(const struct plat_psci_ops **);
PSCI: Introduce new platform interface to describe topology This patch removes the assumption in the current PSCI implementation that MPIDR based affinity levels map directly to levels in a power domain tree. This enables PSCI generic code to support complex power domain topologies as envisaged by PSCIv1.0 specification. The platform interface for querying the power domain topology has been changed such that: 1. The generic PSCI code does not generate MPIDRs and use them to query the platform about the number of power domains at a particular power level. The platform now provides a description of the power domain tree on the SoC through a data structure. The existing platform APIs to provide the same information have been removed. 2. The linear indices returned by plat_core_pos_by_mpidr() and plat_my_core_pos() are used to retrieve core power domain nodes from the power domain tree. Power domains above the core level are accessed using a 'parent' field in the tree node descriptors. The platform describes the power domain tree in an array of 'unsigned char's. The first entry in the array specifies the number of power domains at the highest power level implemented in the system. Each susbsequent entry corresponds to a power domain and contains the number of power domains that are its direct children. This array is exported to the generic PSCI implementation via the new `plat_get_power_domain_tree_desc()` platform API. The PSCI generic code uses this array to populate its internal power domain tree using the Breadth First Search like algorithm. The tree is split into two arrays: 1. An array that contains all the core power domain nodes 2. An array that contains all the other power domain nodes A separate array for core nodes allows certain core specific optimisations to be implemented e.g. remove the bakery lock, re-use per-cpu data framework for storing some information. Entries in the core power domain array are allocated such that the array index of the domain is equal to the linear index returned by plat_core_pos_by_mpidr() and plat_my_core_pos() for the MPIDR corresponding to that domain. This relationship is key to be able to use an MPIDR to find the corresponding core power domain node, traverse to higher power domain nodes and index into arrays that contain core specific information. An introductory document has been added to briefly describe the new interface. Change-Id: I4b444719e8e927ba391cae48a23558308447da13
2015-04-08 17:42:06 +01:00
const unsigned char *plat_get_power_domain_tree_desc(void);
PSCI: Add framework to handle composite power states The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
2015-04-07 12:16:56 +01:00
/*******************************************************************************
* Optional PSCI functions (BL3-1).
******************************************************************************/
plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
const plat_local_state_t *states,
unsigned int ncpu);
/*******************************************************************************
* Optional BL3-1 functions (may be overridden)
******************************************************************************/
void bl31_plat_enable_mmu(uint32_t flags);
/*******************************************************************************
* Optional BL3-2 functions (may be overridden)
******************************************************************************/
void bl32_plat_enable_mmu(uint32_t flags);
/*******************************************************************************
* Trusted Board Boot functions
******************************************************************************/
int plat_get_rotpk_info(void *cookie, void **key_ptr, unsigned int *key_len,
unsigned int *flags);
#endif /* __PLATFORM_H__ */