Add SPI-MEM framework

This framework supports SPI operations using a common
spi_mem_op structure:
 - command
 - addr
 - dummy
 - data

The framework manages SPI bus configuration:
 - speed
 - bus width (Up to quad mode)
 - chip select

Change-Id: Idc2736c59bfc5ac6e55429eba5d385275ea3fbde
Signed-off-by: Lionel Debieve <lionel.debieve@st.com>
Signed-off-by: Christophe Kerello <christophe.kerello@st.com>
This commit is contained in:
Lionel Debieve 2019-09-24 17:38:12 +02:00
parent b114abb609
commit 05e6a5638b
2 changed files with 418 additions and 0 deletions

View File

@ -0,0 +1,288 @@
/*
* Copyright (c) 2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <libfdt.h>
#include <drivers/spi_mem.h>
#include <lib/utils_def.h>
#define SPI_MEM_DEFAULT_SPEED_HZ 100000U
/*
* struct spi_slave - Representation of a SPI slave.
*
* @max_hz: Maximum speed for this slave in Hertz.
* @cs: ID of the chip select connected to the slave.
* @mode: SPI mode to use for this slave (see SPI mode flags).
* @ops: Ops defined by the bus.
*/
struct spi_slave {
unsigned int max_hz;
unsigned int cs;
unsigned int mode;
const struct spi_bus_ops *ops;
};
static struct spi_slave spi_slave;
static bool spi_mem_check_buswidth_req(uint8_t buswidth, bool tx)
{
switch (buswidth) {
case 1U:
return true;
case 2U:
if ((tx && (spi_slave.mode & (SPI_TX_DUAL | SPI_TX_QUAD)) !=
0U) ||
(!tx && (spi_slave.mode & (SPI_RX_DUAL | SPI_RX_QUAD)) !=
0U)) {
return true;
}
break;
case 4U:
if ((tx && (spi_slave.mode & SPI_TX_QUAD) != 0U) ||
(!tx && (spi_slave.mode & SPI_RX_QUAD) != 0U)) {
return true;
}
break;
default:
break;
}
return false;
}
static bool spi_mem_supports_op(const struct spi_mem_op *op)
{
if (!spi_mem_check_buswidth_req(op->cmd.buswidth, true)) {
return false;
}
if ((op->addr.nbytes != 0U) &&
!spi_mem_check_buswidth_req(op->addr.buswidth, true)) {
return false;
}
if ((op->dummy.nbytes != 0U) &&
!spi_mem_check_buswidth_req(op->dummy.buswidth, true)) {
return false;
}
if ((op->data.nbytes != 0U) &&
!spi_mem_check_buswidth_req(op->data.buswidth,
op->data.dir == SPI_MEM_DATA_OUT)) {
return false;
}
return true;
}
static int spi_mem_set_speed_mode(void)
{
const struct spi_bus_ops *ops = spi_slave.ops;
int ret;
ret = ops->set_speed(spi_slave.max_hz);
if (ret != 0) {
VERBOSE("Cannot set speed (err=%d)\n", ret);
return ret;
}
ret = ops->set_mode(spi_slave.mode);
if (ret != 0) {
VERBOSE("Cannot set mode (err=%d)\n", ret);
return ret;
}
return 0;
}
static int spi_mem_check_bus_ops(const struct spi_bus_ops *ops)
{
bool error = false;
if (ops->claim_bus == NULL) {
VERBOSE("Ops claim bus is not defined\n");
error = true;
}
if (ops->release_bus == NULL) {
VERBOSE("Ops release bus is not defined\n");
error = true;
}
if (ops->exec_op == NULL) {
VERBOSE("Ops exec op is not defined\n");
error = true;
}
if (ops->set_speed == NULL) {
VERBOSE("Ops set speed is not defined\n");
error = true;
}
if (ops->set_mode == NULL) {
VERBOSE("Ops set mode is not defined\n");
error = true;
}
return error ? -EINVAL : 0;
}
/*
* spi_mem_exec_op() - Execute a memory operation.
* @op: The memory operation to execute.
*
* This function first checks that @op is supported and then tries to execute
* it.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int spi_mem_exec_op(const struct spi_mem_op *op)
{
const struct spi_bus_ops *ops = spi_slave.ops;
int ret;
VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addqr:%llx len:%x\n",
__func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
if (!spi_mem_supports_op(op)) {
WARN("Error in spi_mem_support\n");
return -ENOTSUP;
}
ret = ops->claim_bus(spi_slave.cs);
if (ret != 0) {
WARN("Error claim_bus\n");
return ret;
}
ret = ops->exec_op(op);
ops->release_bus();
return ret;
}
/*
* spi_mem_init_slave() - SPI slave device initialization.
* @fdt: Pointer to the device tree blob.
* @bus_node: Offset of the bus node.
* @ops: The SPI bus ops defined.
*
* This function first checks that @ops are supported and then tries to find
* a SPI slave device.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int spi_mem_init_slave(void *fdt, int bus_node, const struct spi_bus_ops *ops)
{
int ret;
int mode = 0;
int nchips = 0;
int bus_subnode = 0;
const fdt32_t *cuint = NULL;
ret = spi_mem_check_bus_ops(ops);
if (ret != 0) {
return ret;
}
fdt_for_each_subnode(bus_subnode, fdt, bus_node) {
nchips++;
}
if (nchips != 1) {
ERROR("Only one SPI device is currently supported\n");
return -EINVAL;
}
fdt_for_each_subnode(bus_subnode, fdt, bus_node) {
/* Get chip select */
cuint = fdt_getprop(fdt, bus_subnode, "reg", NULL);
if (cuint == NULL) {
ERROR("Chip select not well defined\n");
return -EINVAL;
}
spi_slave.cs = fdt32_to_cpu(*cuint);
/* Get max slave frequency */
spi_slave.max_hz = SPI_MEM_DEFAULT_SPEED_HZ;
cuint = fdt_getprop(fdt, bus_subnode,
"spi-max-frequency", NULL);
if (cuint != NULL) {
spi_slave.max_hz = fdt32_to_cpu(*cuint);
}
/* Get mode */
if ((fdt_getprop(fdt, bus_subnode, "spi-cpol", NULL)) != NULL) {
mode |= SPI_CPOL;
}
if ((fdt_getprop(fdt, bus_subnode, "spi-cpha", NULL)) != NULL) {
mode |= SPI_CPHA;
}
if ((fdt_getprop(fdt, bus_subnode, "spi-cs-high", NULL)) !=
NULL) {
mode |= SPI_CS_HIGH;
}
if ((fdt_getprop(fdt, bus_subnode, "spi-3wire", NULL)) !=
NULL) {
mode |= SPI_3WIRE;
}
if ((fdt_getprop(fdt, bus_subnode, "spi-half-duplex", NULL)) !=
NULL) {
mode |= SPI_PREAMBLE;
}
/* Get dual/quad mode */
cuint = fdt_getprop(fdt, bus_subnode, "spi-tx-bus-width", NULL);
if (cuint != NULL) {
switch (fdt32_to_cpu(*cuint)) {
case 1U:
break;
case 2U:
mode |= SPI_TX_DUAL;
break;
case 4U:
mode |= SPI_TX_QUAD;
break;
default:
WARN("spi-tx-bus-width %d not supported\n",
fdt32_to_cpu(*cuint));
return -EINVAL;
}
}
cuint = fdt_getprop(fdt, bus_subnode, "spi-rx-bus-width", NULL);
if (cuint != NULL) {
switch (fdt32_to_cpu(*cuint)) {
case 1U:
break;
case 2U:
mode |= SPI_RX_DUAL;
break;
case 4U:
mode |= SPI_RX_QUAD;
break;
default:
WARN("spi-rx-bus-width %d not supported\n",
fdt32_to_cpu(*cuint));
return -EINVAL;
}
}
spi_slave.mode = mode;
spi_slave.ops = ops;
}
return spi_mem_set_speed_mode();
}

130
include/drivers/spi_mem.h Normal file
View File

@ -0,0 +1,130 @@
/*
* Copyright (c) 2019, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef DRIVERS_SPI_MEM_H
#define DRIVERS_SPI_MEM_H
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#define SPI_MEM_BUSWIDTH_1_LINE 1U
#define SPI_MEM_BUSWIDTH_2_LINE 2U
#define SPI_MEM_BUSWIDTH_4_LINE 4U
/*
* enum spi_mem_data_dir - Describes the direction of a SPI memory data
* transfer from the controller perspective.
* @SPI_MEM_DATA_IN: data coming from the SPI memory.
* @SPI_MEM_DATA_OUT: data sent to the SPI memory.
*/
enum spi_mem_data_dir {
SPI_MEM_DATA_IN,
SPI_MEM_DATA_OUT,
};
/*
* struct spi_mem_op - Describes a SPI memory operation.
*
* @cmd.buswidth: Number of IO lines used to transmit the command.
* @cmd.opcode: Operation opcode.
* @addr.nbytes: Number of address bytes to send. Can be zero if the operation
* does not need to send an address.
* @addr.buswidth: Number of IO lines used to transmit the address.
* @addr.val: Address value. This value is always sent MSB first on the bus.
* Note that only @addr.nbytes are taken into account in this
* address value, so users should make sure the value fits in the
* assigned number of bytes.
* @dummy.nbytes: Number of dummy bytes to send after an opcode or address. Can
* be zero if the operation does not require dummy bytes.
* @dummy.buswidth: Number of IO lines used to transmit the dummy bytes.
* @data.buswidth: Number of IO lines used to send/receive the data.
* @data.dir: Direction of the transfer.
* @data.nbytes: Number of data bytes to transfer.
* @data.buf: Input or output data buffer depending on data::dir.
*/
struct spi_mem_op {
struct {
uint8_t buswidth;
uint8_t opcode;
} cmd;
struct {
uint8_t nbytes;
uint8_t buswidth;
uint64_t val;
} addr;
struct {
uint8_t nbytes;
uint8_t buswidth;
} dummy;
struct {
uint8_t buswidth;
enum spi_mem_data_dir dir;
unsigned int nbytes;
void *buf;
} data;
};
/* SPI mode flags */
#define SPI_CPHA BIT(0) /* clock phase */
#define SPI_CPOL BIT(1) /* clock polarity */
#define SPI_CS_HIGH BIT(2) /* CS active high */
#define SPI_LSB_FIRST BIT(3) /* per-word bits-on-wire */
#define SPI_3WIRE BIT(4) /* SI/SO signals shared */
#define SPI_PREAMBLE BIT(5) /* Skip preamble bytes */
#define SPI_TX_DUAL BIT(6) /* transmit with 2 wires */
#define SPI_TX_QUAD BIT(7) /* transmit with 4 wires */
#define SPI_RX_DUAL BIT(8) /* receive with 2 wires */
#define SPI_RX_QUAD BIT(9) /* receive with 4 wires */
struct spi_bus_ops {
/*
* Claim the bus and prepare it for communication.
*
* @cs: The chip select.
* Returns: 0 if the bus was claimed successfully, or a negative value
* if it wasn't.
*/
int (*claim_bus)(unsigned int cs);
/*
* Release the SPI bus.
*/
void (*release_bus)(void);
/*
* Set transfer speed.
*
* @hz: The transfer speed in Hertz.
* Returns: 0 on success, a negative error code otherwise.
*/
int (*set_speed)(unsigned int hz);
/*
* Set the SPI mode/flags.
*
* @mode: Requested SPI mode (SPI_... flags).
* Returns: 0 on success, a negative error code otherwise.
*/
int (*set_mode)(unsigned int mode);
/*
* Execute a SPI memory operation.
*
* @op: The memory operation to execute.
* Returns: 0 on success, a negative error code otherwise.
*/
int (*exec_op)(const struct spi_mem_op *op);
};
int spi_mem_exec_op(const struct spi_mem_op *op);
int spi_mem_init_slave(void *fdt, int bus_node,
const struct spi_bus_ops *ops);
#endif /* DRIVERS_SPI_MEM_H */