SPM: Move all SP-related info to SP context struct

Move all information related to a Secure Partition to the struct
secure_partition_context_t.

This requires an in-depth refactor because most of the previous code of
SPM relied on global information.

Change-Id: I0a23e93817dcc191ce1d7506b8bc671d376123c4
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This commit is contained in:
Antonio Nino Diaz 2018-05-23 11:40:46 +01:00
parent 1634cae89d
commit 22282bb68a
5 changed files with 125 additions and 233 deletions

View File

@ -55,8 +55,4 @@ typedef struct secure_partition_boot_info {
secure_partition_mp_info_t *mp_info;
} secure_partition_boot_info_t;
/* Setup function for secure partitions context. */
void secure_partition_setup(void);
#endif /* __SECURE_PARTITION_H__ */

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -15,46 +15,28 @@
#include <platform.h>
#include <secure_partition.h>
#include <string.h>
#include <types.h>
#include <xlat_tables_v2.h>
#include "spm_private.h"
#include "spm_shim_private.h"
/* Place translation tables by default along with the ones used by BL31. */
#ifndef PLAT_SP_IMAGE_XLAT_SECTION_NAME
#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "xlat_table"
#endif
/* Allocate and initialise the translation context for the secure partition. */
REGISTER_XLAT_CONTEXT2(secure_partition,
PLAT_SP_IMAGE_MMAP_REGIONS,
PLAT_SP_IMAGE_MAX_XLAT_TABLES,
PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
EL1_EL0_REGIME, PLAT_SP_IMAGE_XLAT_SECTION_NAME);
/* Export a handle on the secure partition translation context */
xlat_ctx_t *secure_partition_xlat_ctx_handle = &secure_partition_xlat_ctx;
/* Setup context of the Secure Partition */
void secure_partition_setup(void)
void secure_partition_setup(secure_partition_context_t *sp_ctx)
{
VERBOSE("S-EL1/S-EL0 context setup start...\n");
cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
cpu_context_t *ctx = cm_get_context(SECURE);
/*
* Initialize CPU context
* ----------------------
*/
/* Make sure that we got a Secure context. */
assert(ctx != NULL);
entry_point_info_t ep_info = {0};
/* Assert we are in Secure state. */
assert((read_scr_el3() & SCR_NS_BIT) == 0);
SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
ep_info.pc = BL32_BASE;
ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
/* Disable MMU at EL1. */
disable_mmu_icache_el1();
/* Invalidate TLBs at EL1. */
tlbivmalle1();
dsbish();
cm_setup_context(ctx, &ep_info);
/*
* General-Purpose registers
@ -143,13 +125,13 @@ void secure_partition_setup(void)
MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
SPM_SHIM_EXCEPTIONS_SIZE,
MT_CODE | MT_SECURE | MT_PRIVILEGED);
mmap_add_region_ctx(&secure_partition_xlat_ctx,
mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
&sel1_exception_vectors);
mmap_add_ctx(&secure_partition_xlat_ctx,
mmap_add_ctx(sp_ctx->xlat_ctx_handle,
plat_get_secure_partition_mmap(NULL));
init_xlat_tables_ctx(&secure_partition_xlat_ctx);
init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
/*
* MMU-related registers
@ -222,9 +204,12 @@ void secure_partition_setup(void)
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
uint64_t *xlat_base =
((xlat_ctx_t *)sp_ctx->xlat_ctx_handle)->base_table;
/* Point TTBR0_EL1 at the tables of the context created for the SP. */
write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1,
(u_register_t)secure_partition_base_xlat_table);
(u_register_t)xlat_base);
/*
* Setup other system registers
@ -312,6 +297,4 @@ void secure_partition_setup(void)
if (plat_my_core_pos() == sp_mp_info[index].linear_id)
sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
}
VERBOSE("S-EL1/S-EL0 context setup end.\n");
}

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
# Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
@ -11,14 +11,11 @@ ifneq (${ARCH},aarch64)
$(error "Error: SPM is only supported on aarch64.")
endif
# SPM sources
SPM_SOURCES := $(addprefix services/std_svc/spm/, \
spm_main.c \
${ARCH}/spm_helpers.S \
secure_partition_setup.c \
${ARCH}/spm_shim_exceptions.S)
${ARCH}/spm_shim_exceptions.S \
spm_main.c \
sp_setup.c)
# Let the top-level Makefile know that we intend to include a BL32 image

View File

@ -22,203 +22,111 @@
#include <xlat_tables_v2.h>
#include "spm_private.h"
#include "spm_shim_private.h"
/* Place translation tables by default along with the ones used by BL31. */
#ifndef PLAT_SP_IMAGE_XLAT_SECTION_NAME
#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "xlat_table"
#endif
/* Allocate and initialise the translation context for the secure partitions. */
REGISTER_XLAT_CONTEXT2(sp,
PLAT_SP_IMAGE_MMAP_REGIONS,
PLAT_SP_IMAGE_MAX_XLAT_TABLES,
PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
EL1_EL0_REGIME, PLAT_SP_IMAGE_XLAT_SECTION_NAME);
/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */
static spinlock_t mem_attr_smc_lock;
/* Get handle of Secure Partition translation context */
xlat_ctx_t *spm_get_sp_xlat_context(void)
{
return &sp_xlat_ctx;
};
/*******************************************************************************
* Secure Partition context information.
******************************************************************************/
static secure_partition_context_t sp_ctx;
/*******************************************************************************
* Replace the S-EL1 re-entry information with S-EL0 re-entry
* information
* This function takes an SP context pointer and prepares the CPU to enter.
******************************************************************************/
static void spm_setup_next_eret_into_sel0(const cpu_context_t *secure_context)
static void spm_sp_prepare_enter(secure_partition_context_t *sp_ctx)
{
assert(secure_context == cm_get_context(SECURE));
assert(sp_ctx != NULL);
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
}
/* Assign the context of the SP to this CPU */
cm_set_context(&(sp_ctx->cpu_ctx), SECURE);
/*******************************************************************************
* This function takes an SP context pointer and:
* 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx.
* 2. Saves the current C runtime state (callee-saved registers) on the stack
* frame and saves a reference to this state.
* 3. Calls el3_exit() so that the EL3 system and general purpose registers
* from the sp_ctx->cpu_ctx are used to enter the secure partition image.
******************************************************************************/
static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr)
{
uint64_t rc;
assert(sp_ctx_ptr != NULL);
assert(sp_ctx_ptr->c_rt_ctx == 0);
assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
/* Apply the Secure EL1 system register context and switch to it */
/* Restore the context assigned above */
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
VERBOSE("%s: We're about to enter the Secure partition...\n", __func__);
rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx);
#if ENABLE_ASSERTIONS
sp_ctx_ptr->c_rt_ctx = 0;
#endif
return rc;
/* Invalidate TLBs at EL1. */
tlbivmalle1();
dsbish();
}
/*******************************************************************************
* This function takes a Secure partition context pointer and:
* 1. Saves the S-EL1 system register context to sp_ctx->cpu_ctx.
* 2. Restores the current C runtime state (callee saved registers) from the
* stack frame using the reference to this state saved in
* spm_secure_partition_enter().
* 3. It does not need to save any general purpose or EL3 system register state
* as the generic smc entry routine should have saved those.
* Enter SP after preparing it with spm_sp_prepare_enter().
******************************************************************************/
static void __dead2 spm_synchronous_sp_exit(
const secure_partition_context_t *sp_ctx_ptr, uint64_t ret)
static uint64_t spm_sp_enter(secure_partition_context_t *sp_ctx)
{
assert(sp_ctx_ptr != NULL);
/* Save the Secure EL1 system register context */
assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
cm_el1_sysregs_context_save(SECURE);
assert(sp_ctx_ptr->c_rt_ctx != 0U);
spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret);
/* Should never reach here */
assert(0);
/* Enter Secure Partition */
return spm_secure_partition_enter(&sp_ctx->c_rt_ctx);
}
/*******************************************************************************
* This function passes control to the Secure Partition image (BL32) for the
* first time on the primary cpu after a cold boot. It assumes that a valid
* secure context has already been created by spm_setup() which can be directly
* used. This function performs a synchronous entry into the Secure partition.
* The SP passes control back to this routine through a SMC.
* Jump to each Secure Partition for the first time.
******************************************************************************/
static int32_t spm_init(void)
{
entry_point_info_t *secure_partition_ep_info;
uint64_t rc;
uint64_t rc = 0;
secure_partition_context_t *ctx;
VERBOSE("%s entry\n", __func__);
INFO("Secure Partition init...\n");
/*
* Get information about the Secure Partition (BL32) image. Its
* absence is a critical failure.
*/
secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
assert(secure_partition_ep_info != NULL);
ctx = &sp_ctx;
/*
* Initialise the common context and then overlay the S-EL0 specific
* context on top of it.
*/
cm_init_my_context(secure_partition_ep_info);
secure_partition_setup();
ctx->sp_init_in_progress = 1;
/*
* Make all CPUs use the same secure context.
*/
for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) {
cm_set_context_by_index(i, &sp_ctx.cpu_ctx, SECURE);
}
/*
* Arrange for an entry into the secure partition.
*/
sp_ctx.sp_init_in_progress = 1;
rc = spm_synchronous_sp_entry(&sp_ctx);
spm_sp_prepare_enter(ctx);
rc |= spm_sp_enter(ctx);
assert(rc == 0);
sp_ctx.sp_init_in_progress = 0;
VERBOSE("SP_MEMORY_ATTRIBUTES_SET_AARCH64 availability has been revoked\n");
ctx->sp_init_in_progress = 0;
INFO("Secure Partition initialized.\n");
return rc;
}
/*******************************************************************************
* Given a secure partition entrypoint info pointer, entry point PC & pointer to
* a context data structure, this function will initialize the SPM context and
* entry point info for the secure partition.
******************************************************************************/
void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
uint64_t pc,
secure_partition_context_t *sp_ctx_ptr)
{
uint32_t ep_attr;
assert(sp_ep_info != NULL);
assert(pc != 0U);
assert(sp_ctx_ptr != NULL);
cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE);
/* initialise an entrypoint to set up the CPU context */
ep_attr = SECURE | EP_ST_ENABLE;
if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U)
ep_attr |= EP_EE_BIG;
SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr);
sp_ep_info->pc = pc;
/* The secure partition runs in S-EL0. */
sp_ep_info->spsr = SPSR_64(MODE_EL0,
MODE_SP_EL0,
DISABLE_ALL_EXCEPTIONS);
zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args));
}
/*******************************************************************************
* Secure Partition Manager setup. The SPM finds out the SP entrypoint if not
* already known and initialises the context for entry into the SP for its
* initialisation.
* Initialize contexts of all Secure Partitions.
******************************************************************************/
int32_t spm_setup(void)
{
entry_point_info_t *secure_partition_ep_info;
secure_partition_context_t *ctx;
VERBOSE("%s entry\n", __func__);
/* Disable MMU at EL1 (initialized by BL2) */
disable_mmu_icache_el1();
/*
* Get information about the Secure Partition (BL32) image. Its
* absence is a critical failure.
*/
secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
if (secure_partition_ep_info == NULL) {
WARN("No SPM provided by BL2 boot loader, Booting device"
" without SPM initialization. SMCs destined for SPM"
" will return SMC_UNK\n");
return 1;
}
/* Initialize context of the SP */
INFO("Secure Partition context setup start...\n");
/*
* If there's no valid entry point for SP, we return a non-zero value
* signalling failure initializing the service. We bail out without
* registering any handlers
*/
if (secure_partition_ep_info->pc == 0U) {
return 1;
}
ctx = &sp_ctx;
spm_init_sp_ep_state(secure_partition_ep_info,
secure_partition_ep_info->pc,
&sp_ctx);
/* Assign translation tables context. */
ctx->xlat_ctx_handle = spm_get_sp_xlat_context();
/*
* All SPM initialization done. Now register our init function with
* BL31 for deferred invocation
*/
secure_partition_setup(ctx);
/* Register init function for deferred init. */
bl31_register_bl32_init(&spm_init);
VERBOSE("%s exit\n", __func__);
INFO("Secure Partition setup done.\n");
return 0;
}
@ -290,13 +198,15 @@ static unsigned int smc_mmap_to_smc_attr(unsigned int attr)
return smc_attr;
}
static int32_t spm_memory_attributes_get_smc_handler(uintptr_t base_va)
static int32_t spm_memory_attributes_get_smc_handler(
secure_partition_context_t *sp_ctx,
uintptr_t base_va)
{
uint32_t attributes;
spin_lock(&mem_attr_smc_lock);
int rc = get_mem_attributes(secure_partition_xlat_ctx_handle,
int rc = get_mem_attributes(sp_ctx->xlat_ctx_handle,
base_va, &attributes);
spin_unlock(&mem_attr_smc_lock);
@ -311,7 +221,9 @@ static int32_t spm_memory_attributes_get_smc_handler(uintptr_t base_va)
}
}
static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
static int spm_memory_attributes_set_smc_handler(
secure_partition_context_t *sp_ctx,
u_register_t page_address,
u_register_t pages_count,
u_register_t smc_attributes)
{
@ -325,8 +237,9 @@ static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
spin_lock(&mem_attr_smc_lock);
int ret = change_mem_attributes(secure_partition_xlat_ctx_handle,
base_va, size, smc_attr_to_mmap_attr(attributes));
int ret = change_mem_attributes(sp_ctx->xlat_ctx_handle,
base_va, size,
smc_attr_to_mmap_attr(attributes));
spin_unlock(&mem_attr_smc_lock);
@ -336,7 +249,9 @@ static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER;
}
/*******************************************************************************
* Secure Partition Manager SMC handler.
******************************************************************************/
uint64_t spm_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
@ -356,17 +271,21 @@ uint64_t spm_smc_handler(uint32_t smc_fid,
/* Handle SMCs from Secure world. */
assert(handle == cm_get_context(SECURE));
/* Make next ERET jump to S-EL0 instead of S-EL1. */
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
switch (smc_fid) {
case SPM_VERSION_AARCH32:
SMC_RET1(handle, SPM_VERSION_COMPILED);
case SP_EVENT_COMPLETE_AARCH64:
assert(handle == cm_get_context(SECURE));
/* Save secure state */
cm_el1_sysregs_context_save(SECURE);
spm_setup_next_eret_into_sel0(handle);
if (sp_ctx.sp_init_in_progress) {
if (sp_ctx.sp_init_in_progress == 1) {
/*
* SPM reports completion. The SPM must have
* initiated the original request through a
@ -374,18 +293,18 @@ uint64_t spm_smc_handler(uint32_t smc_fid,
* partition. Jump back to the original C
* runtime context.
*/
spm_synchronous_sp_exit(&sp_ctx, x1);
assert(0);
spm_secure_partition_exit(sp_ctx.c_rt_ctx, x1);
/* spm_secure_partition_exit doesn't return */
}
/* Release the Secure Partition context */
spin_unlock(&sp_ctx.lock);
spin_unlock(&(sp_ctx.lock));
/*
* This is the result from the Secure partition of an
* earlier request. Copy the result into the non-secure
* context, save the secure state and return to the
* non-secure state.
* context and return to the non-secure state.
*/
/* Get a reference to the non-secure context */
@ -402,20 +321,24 @@ uint64_t spm_smc_handler(uint32_t smc_fid,
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
if (!sp_ctx.sp_init_in_progress) {
if (sp_ctx.sp_init_in_progress == 0) {
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1));
SMC_RET1(handle,
spm_memory_attributes_get_smc_handler(
&sp_ctx, x1));
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
if (!sp_ctx.sp_init_in_progress) {
if (sp_ctx.sp_init_in_progress == 0) {
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3));
SMC_RET1(handle,
spm_memory_attributes_set_smc_handler(
&sp_ctx, x1, x2, x3));
default:
break;
}
@ -456,16 +379,13 @@ uint64_t spm_smc_handler(uint32_t smc_fid,
/* Lock the Secure Partition context. */
spin_lock(&sp_ctx.lock);
/*
* Restore the secure world context and prepare for
* entry in S-EL0
*/
assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE));
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
/* Jump to the Secure Partition. */
SMC_RET4(&sp_ctx.cpu_ctx, smc_fid, comm_buffer_address,
comm_size_address, plat_my_core_pos());
spm_sp_prepare_enter(&sp_ctx);
SMC_RET4(&(sp_ctx.cpu_ctx), smc_fid,
comm_buffer_address, comm_size_address,
plat_my_core_pos());
}
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -29,30 +29,26 @@
#define SP_C_RT_CTX_SIZE 0x60
#define SP_C_RT_CTX_ENTRIES (SP_C_RT_CTX_SIZE >> DWORD_SHIFT)
#ifndef __ASSEMBLY__
#include <spinlock.h>
#include <stdint.h>
#include <xlat_tables_v2.h>
/* Handle on the Secure partition translation context */
extern xlat_ctx_t *secure_partition_xlat_ctx_handle;
struct entry_point_info;
typedef struct secure_partition_context {
uint64_t c_rt_ctx;
cpu_context_t cpu_ctx;
xlat_ctx_t *xlat_ctx_handle;
unsigned int sp_init_in_progress;
spinlock_t lock;
} secure_partition_context_t;
/* Assembly helpers */
uint64_t spm_secure_partition_enter(uint64_t *c_rt_ctx);
void __dead2 spm_secure_partition_exit(uint64_t c_rt_ctx, uint64_t ret);
void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
uint64_t pc,
secure_partition_context_t *sp_ctx_ptr);
void secure_partition_setup(secure_partition_context_t *sp_ctx);
#endif /* __ASSEMBLY__ */
#endif /* __SPM_PRIVATE_H__ */