Merge changes from topic "allwinner_pmic" into integration

* changes:
  allwinner: Convert AXP803 regulator setup code into a driver
  allwinner: a64: power: Use fdt_for_each_subnode
  allwinner: a64: power: Remove obsolete register check
  allwinner: a64: power: Remove duplicate DT check
  allwinner: Build PMIC bus drivers only in BL31
  allwinner: a64: power: Make sunxi_turn_off_soc static
  allwinner: Merge duplicate code in sunxi_power_down
  allwinner: Clean up PMIC-related error handling
  allwinner: Synchronize PMIC enumerations
  allwinner: Enable clock before resetting I2C/RSB
This commit is contained in:
Sandrine Bailleux 2019-12-17 09:32:26 +00:00 committed by TrustedFirmware Code Review
commit 2f3abc19d3
10 changed files with 309 additions and 224 deletions

View File

@ -0,0 +1,22 @@
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <drivers/allwinner/axp.h>
const uint8_t axp_chip_id = AXP803_CHIP_ID;
const char *const axp_compatible = "x-powers,axp803";
const struct axp_regulator axp_regulators[] = {
{"dcdc1", 1600, 3400, 100, NA, 0x20, 0x10, 0},
{"dcdc5", 800, 1840, 10, 32, 0x24, 0x10, 4},
{"dcdc6", 600, 1520, 10, 50, 0x25, 0x10, 5},
{"dldo1", 700, 3300, 100, NA, 0x15, 0x12, 3},
{"dldo2", 700, 4200, 100, 27, 0x16, 0x12, 4},
{"dldo3", 700, 3300, 100, NA, 0x17, 0x12, 5},
{"dldo4", 700, 3300, 100, NA, 0x18, 0x12, 6},
{"fldo1", 700, 1450, 50, NA, 0x1c, 0x13, 2},
{}
};

View File

@ -0,0 +1,169 @@
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <errno.h>
#include <libfdt.h>
#include <common/debug.h>
#include <drivers/allwinner/axp.h>
int axp_check_id(void)
{
int ret;
ret = axp_read(0x03);
if (ret < 0)
return ret;
ret &= 0xcf;
if (ret != axp_chip_id) {
ERROR("PMIC: Found unknown PMIC %02x\n", ret);
return ret;
}
return 0;
}
int axp_clrsetbits(uint8_t reg, uint8_t clr_mask, uint8_t set_mask)
{
uint8_t val;
int ret;
ret = axp_read(reg);
if (ret < 0)
return ret;
val = (ret & ~clr_mask) | set_mask;
return axp_write(reg, val);
}
void axp_power_off(void)
{
/* Set "power disable control" bit */
axp_setbits(0x32, BIT(7));
}
/*
* Retrieve the voltage from a given regulator DTB node.
* Both the regulator-{min,max}-microvolt properties must be present and
* have the same value. Return that value in millivolts.
*/
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{
const fdt32_t *prop;
uint32_t min_volt;
prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
min_volt = fdt32_to_cpu(*prop);
prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
if (fdt32_to_cpu(*prop) != min_volt)
return -EINVAL;
return min_volt / 1000;
}
static int setup_regulator(const void *fdt, int node,
const struct axp_regulator *reg)
{
uint8_t val;
int mvolt;
mvolt = fdt_get_regulator_millivolt(fdt, node);
if (mvolt < reg->min_volt || mvolt > reg->max_volt)
return -EINVAL;
val = (mvolt / reg->step) - (reg->min_volt / reg->step);
if (val > reg->split)
val = ((val - reg->split) / 2) + reg->split;
axp_write(reg->volt_reg, val);
axp_setbits(reg->switch_reg, BIT(reg->switch_bit));
INFO("PMIC: %s voltage: %d.%03dV\n", reg->dt_name,
mvolt / 1000, mvolt % 1000);
return 0;
}
static bool should_enable_regulator(const void *fdt, int node)
{
if (fdt_getprop(fdt, node, "phandle", NULL) != NULL)
return true;
if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
return true;
return false;
}
void axp_setup_regulators(const void *fdt)
{
int node;
bool dc1sw = false;
if (fdt == NULL)
return;
/* locate the PMIC DT node, bail out if not found */
node = fdt_node_offset_by_compatible(fdt, -1, axp_compatible);
if (node < 0) {
WARN("PMIC: No PMIC DT node, skipping setup\n");
return;
}
if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL)) {
axp_clrbits(0x8f, BIT(4));
axp_setbits(0x30, BIT(2));
INFO("PMIC: Enabling DRIVEVBUS\n");
}
/* descend into the "regulators" subnode */
node = fdt_subnode_offset(fdt, node, "regulators");
if (node < 0) {
WARN("PMIC: No regulators DT node, skipping setup\n");
return;
}
/* iterate over all regulators to find used ones */
fdt_for_each_subnode(node, fdt, node) {
const struct axp_regulator *reg;
const char *name;
int length;
/* We only care if it's always on or referenced. */
if (!should_enable_regulator(fdt, node))
continue;
name = fdt_get_name(fdt, node, &length);
for (reg = axp_regulators; reg->dt_name; reg++) {
if (!strncmp(name, reg->dt_name, length)) {
setup_regulator(fdt, node, reg);
break;
}
}
if (!strncmp(name, "dc1sw", length)) {
/* Delay DC1SW enablement to avoid overheating. */
dc1sw = true;
continue;
}
}
/*
* If DLDO2 is enabled after DC1SW, the PMIC overheats and shuts
* down. So always enable DC1SW as the very last regulator.
*/
if (dc1sw) {
INFO("PMIC: Enabling DC1SW\n");
axp_setbits(0x12, BIT(7));
}
}

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef AXP_H
#define AXP_H
#include <stdint.h>
#define NA 0xff
enum {
AXP803_CHIP_ID = 0x41,
};
struct axp_regulator {
const char *dt_name;
uint16_t min_volt;
uint16_t max_volt;
uint16_t step;
unsigned char split;
unsigned char volt_reg;
unsigned char switch_reg;
unsigned char switch_bit;
};
extern const uint8_t axp_chip_id;
extern const char *const axp_compatible;
extern const struct axp_regulator axp_regulators[];
/*
* Since the PMIC can be connected to multiple bus types,
* low-level read/write functions must be provided by the platform
*/
int axp_read(uint8_t reg);
int axp_write(uint8_t reg, uint8_t val);
int axp_clrsetbits(uint8_t reg, uint8_t clr_mask, uint8_t set_mask);
#define axp_clrbits(reg, clr_mask) axp_clrsetbits(reg, clr_mask, 0)
#define axp_setbits(reg, set_mask) axp_clrsetbits(reg, 0, set_mask)
int axp_check_id(void);
void axp_power_off(void);
void axp_setup_regulators(const void *fdt);
#endif /* AXP_H */

View File

@ -12,7 +12,7 @@ void sunxi_configure_mmu_el3(int flags);
void sunxi_cpu_on(u_register_t mpidr); void sunxi_cpu_on(u_register_t mpidr);
void sunxi_cpu_off(u_register_t mpidr); void sunxi_cpu_off(u_register_t mpidr);
void sunxi_disable_secondary_cpus(u_register_t primary_mpidr); void sunxi_disable_secondary_cpus(u_register_t primary_mpidr);
void __dead2 sunxi_power_down(void); void sunxi_power_down(void);
int sunxi_pmic_setup(uint16_t socid, const void *fdt); int sunxi_pmic_setup(uint16_t socid, const void *fdt);
void sunxi_security_setup(void); void sunxi_security_setup(void);

View File

@ -150,16 +150,16 @@ int sunxi_init_platform_r_twi(uint16_t socid, bool use_rsb)
/* set both pins to pull-up */ /* set both pins to pull-up */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x1c, 0x0fU, 0x5U); mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x1c, 0x0fU, 0x5U);
/* assert, then de-assert reset of I2C/RSB controller */
mmio_clrbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
mmio_setbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
/* un-gate clock */ /* un-gate clock */
if (socid != SUNXI_SOC_H6) if (socid != SUNXI_SOC_H6)
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, device_bit); mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, device_bit);
else else
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x19c, device_bit | BIT(0)); mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x19c, device_bit | BIT(0));
/* assert, then de-assert reset of I2C/RSB controller */
mmio_clrbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
mmio_setbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
return 0; return 0;
} }

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
* *
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
*/ */
@ -65,6 +65,11 @@ static void __dead2 sunxi_system_off(void)
sunxi_disable_secondary_cpus(read_mpidr()); sunxi_disable_secondary_cpus(read_mpidr());
sunxi_power_down(); sunxi_power_down();
udelay(1000);
ERROR("PSCI: Cannot turn off system, halting\n");
wfi();
panic();
} }
static void __dead2 sunxi_system_reset(void) static void __dead2 sunxi_system_reset(void)

View File

@ -1,5 +1,5 @@
# #
# Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. # Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
# #
# SPDX-License-Identifier: BSD-3-Clause # SPDX-License-Identifier: BSD-3-Clause
# #
@ -7,4 +7,6 @@
# The differences between the platform are covered by the include files. # The differences between the platform are covered by the include files.
include plat/allwinner/common/allwinner-common.mk include plat/allwinner/common/allwinner-common.mk
PLAT_BL_COMMON_SOURCES += drivers/allwinner/sunxi_rsb.c BL31_SOURCES += drivers/allwinner/axp/axp803.c \
drivers/allwinner/axp/common.c \
drivers/allwinner/sunxi_rsb.c

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io> * Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io>
* *
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
@ -7,14 +7,11 @@
#include <errno.h> #include <errno.h>
#include <libfdt.h>
#include <platform_def.h> #include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h> #include <common/debug.h>
#include <drivers/allwinner/axp.h>
#include <drivers/allwinner/sunxi_rsb.h> #include <drivers/allwinner/sunxi_rsb.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h> #include <lib/mmio.h>
#include <sunxi_def.h> #include <sunxi_def.h>
@ -22,6 +19,7 @@
#include <sunxi_private.h> #include <sunxi_private.h>
static enum pmic_type { static enum pmic_type {
UNKNOWN,
GENERIC_H5, GENERIC_H5,
GENERIC_A64, GENERIC_A64,
REF_DESIGN_H5, /* regulators controlled by GPIO pins on port L */ REF_DESIGN_H5, /* regulators controlled by GPIO pins on port L */
@ -38,7 +36,7 @@ static enum pmic_type {
* disabled. * disabled.
* This function only cares about peripherals. * This function only cares about peripherals.
*/ */
void sunxi_turn_off_soc(uint16_t socid) static void sunxi_turn_off_soc(uint16_t socid)
{ {
int i; int i;
@ -113,175 +111,22 @@ static int rsb_init(void)
return ret; return ret;
/* Associate the 8-bit runtime address with the 12-bit bus address. */ /* Associate the 8-bit runtime address with the 12-bit bus address. */
return rsb_assign_runtime_address(AXP803_HW_ADDR, ret = rsb_assign_runtime_address(AXP803_HW_ADDR,
AXP803_RT_ADDR); AXP803_RT_ADDR);
} if (ret)
static int axp_write(uint8_t reg, uint8_t val)
{
return rsb_write(AXP803_RT_ADDR, reg, val);
}
static int axp_clrsetbits(uint8_t reg, uint8_t clr_mask, uint8_t set_mask)
{
uint8_t regval;
int ret;
ret = rsb_read(AXP803_RT_ADDR, reg);
if (ret < 0)
return ret; return ret;
regval = (ret & ~clr_mask) | set_mask; return axp_check_id();
return rsb_write(AXP803_RT_ADDR, reg, regval);
} }
#define axp_clrbits(reg, clr_mask) axp_clrsetbits(reg, clr_mask, 0) int axp_read(uint8_t reg)
#define axp_setbits(reg, set_mask) axp_clrsetbits(reg, 0, set_mask)
static bool should_enable_regulator(const void *fdt, int node)
{ {
if (fdt_getprop(fdt, node, "phandle", NULL) != NULL) return rsb_read(AXP803_RT_ADDR, reg);
return true;
if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
return true;
return false;
} }
/* int axp_write(uint8_t reg, uint8_t val)
* Retrieve the voltage from a given regulator DTB node.
* Both the regulator-{min,max}-microvolt properties must be present and
* have the same value. Return that value in millivolts.
*/
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{ {
const fdt32_t *prop; return rsb_write(AXP803_RT_ADDR, reg, val);
uint32_t min_volt;
prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
min_volt = fdt32_to_cpu(*prop);
prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
if (fdt32_to_cpu(*prop) != min_volt)
return -EINVAL;
return min_volt / 1000;
}
#define NO_SPLIT 0xff
static const struct axp_regulator {
char *dt_name;
uint16_t min_volt;
uint16_t max_volt;
uint16_t step;
unsigned char split;
unsigned char volt_reg;
unsigned char switch_reg;
unsigned char switch_bit;
} regulators[] = {
{"dcdc1", 1600, 3400, 100, NO_SPLIT, 0x20, 0x10, 0},
{"dcdc5", 800, 1840, 10, 32, 0x24, 0x10, 4},
{"dcdc6", 600, 1520, 10, 50, 0x25, 0x10, 5},
{"dldo1", 700, 3300, 100, NO_SPLIT, 0x15, 0x12, 3},
{"dldo2", 700, 4200, 100, 27, 0x16, 0x12, 4},
{"dldo3", 700, 3300, 100, NO_SPLIT, 0x17, 0x12, 5},
{"dldo4", 700, 3300, 100, NO_SPLIT, 0x18, 0x12, 6},
{"fldo1", 700, 1450, 50, NO_SPLIT, 0x1c, 0x13, 2},
{}
};
static int setup_regulator(const void *fdt, int node,
const struct axp_regulator *reg)
{
int mvolt;
uint8_t regval;
if (!should_enable_regulator(fdt, node))
return -ENOENT;
mvolt = fdt_get_regulator_millivolt(fdt, node);
if (mvolt < reg->min_volt || mvolt > reg->max_volt)
return -EINVAL;
regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
if (regval > reg->split)
regval = ((regval - reg->split) / 2) + reg->split;
axp_write(reg->volt_reg, regval);
if (reg->switch_reg < 0xff)
axp_setbits(reg->switch_reg, BIT(reg->switch_bit));
INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
mvolt / 1000, mvolt % 1000);
return 0;
}
static void setup_axp803_rails(const void *fdt)
{
int node;
bool dc1sw = false;
/* locate the PMIC DT node, bail out if not found */
node = fdt_node_offset_by_compatible(fdt, -1, "x-powers,axp803");
if (node < 0) {
WARN("BL31: PMIC: Cannot find AXP803 DT node, skipping initial setup.\n");
return;
}
if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL)) {
axp_clrbits(0x8f, BIT(4));
axp_setbits(0x30, BIT(2));
INFO("PMIC: AXP803: Enabling DRIVEVBUS\n");
}
/* descend into the "regulators" subnode */
node = fdt_subnode_offset(fdt, node, "regulators");
if (node < 0) {
WARN("BL31: PMIC: Cannot find regulators subnode, skipping initial setup.\n");
return;
}
/* iterate over all regulators to find used ones */
for (node = fdt_first_subnode(fdt, node);
node >= 0;
node = fdt_next_subnode(fdt, node)) {
const struct axp_regulator *reg;
const char *name;
int length;
/* We only care if it's always on or referenced. */
if (!should_enable_regulator(fdt, node))
continue;
name = fdt_get_name(fdt, node, &length);
for (reg = regulators; reg->dt_name; reg++) {
if (!strncmp(name, reg->dt_name, length)) {
setup_regulator(fdt, node, reg);
break;
}
}
if (!strncmp(name, "dc1sw", length)) {
/* Delay DC1SW enablement to avoid overheating. */
dc1sw = true;
continue;
}
}
/*
* If DLDO2 is enabled after DC1SW, the PMIC overheats and shuts
* down. So always enable DC1SW as the very last regulator.
*/
if (dc1sw) {
INFO("PMIC: AXP803: Enabling DC1SW\n");
axp_setbits(0x12, BIT(7));
}
} }
int sunxi_pmic_setup(uint16_t socid, const void *fdt) int sunxi_pmic_setup(uint16_t socid, const void *fdt)
@ -290,11 +135,16 @@ int sunxi_pmic_setup(uint16_t socid, const void *fdt)
switch (socid) { switch (socid) {
case SUNXI_SOC_H5: case SUNXI_SOC_H5:
NOTICE("PMIC: Assuming H5 reference regulator design\n");
pmic = REF_DESIGN_H5; pmic = REF_DESIGN_H5;
NOTICE("BL31: PMIC: Defaulting to PortL GPIO according to H5 reference design.\n");
break; break;
case SUNXI_SOC_A64: case SUNXI_SOC_A64:
pmic = GENERIC_A64; pmic = GENERIC_A64;
INFO("PMIC: Probing AXP803 on RSB\n");
ret = sunxi_init_platform_r_twi(socid, true); ret = sunxi_init_platform_r_twi(socid, true);
if (ret) if (ret)
return ret; return ret;
@ -304,20 +154,16 @@ int sunxi_pmic_setup(uint16_t socid, const void *fdt)
return ret; return ret;
pmic = AXP803_RSB; pmic = AXP803_RSB;
NOTICE("BL31: PMIC: Detected AXP803 on RSB.\n"); axp_setup_regulators(fdt);
if (fdt)
setup_axp803_rails(fdt);
break; break;
default: default:
NOTICE("BL31: PMIC: No support for Allwinner %x SoC.\n", socid);
return -ENODEV; return -ENODEV;
} }
return 0; return 0;
} }
void __dead2 sunxi_power_down(void) void sunxi_power_down(void)
{ {
switch (pmic) { switch (pmic) {
case GENERIC_H5: case GENERIC_H5:
@ -355,16 +201,10 @@ void __dead2 sunxi_power_down(void)
/* (Re-)init RSB in case the rich OS has disabled it. */ /* (Re-)init RSB in case the rich OS has disabled it. */
sunxi_init_platform_r_twi(SUNXI_SOC_A64, true); sunxi_init_platform_r_twi(SUNXI_SOC_A64, true);
rsb_init(); rsb_init();
axp_power_off();
/* Set "power disable control" bit */
axp_setbits(0x32, BIT(7));
break; break;
default: default:
break; break;
} }
udelay(1000);
ERROR("PSCI: Cannot turn off system, halting.\n");
wfi();
panic();
} }

View File

@ -1,5 +1,5 @@
# #
# Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. # Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
# #
# SPDX-License-Identifier: BSD-3-Clause # SPDX-License-Identifier: BSD-3-Clause
# #
@ -7,4 +7,4 @@
# The differences between the platform are covered by the include files. # The differences between the platform are covered by the include files.
include plat/allwinner/common/allwinner-common.mk include plat/allwinner/common/allwinner-common.mk
PLAT_BL_COMMON_SOURCES += drivers/mentor/i2c/mi2cv.c BL31_SOURCES += drivers/mentor/i2c/mi2cv.c

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io> * Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io>
* *
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
@ -21,27 +21,33 @@
#define AXP805_ADDR 0x36 #define AXP805_ADDR 0x36
#define AXP805_ID 0x03 #define AXP805_ID 0x03
enum pmic_type { static enum pmic_type {
NO_PMIC, UNKNOWN,
AXP805, AXP805,
}; } pmic;
enum pmic_type pmic;
int axp_i2c_read(uint8_t chip, uint8_t reg, uint8_t *val) int axp_i2c_read(uint8_t chip, uint8_t reg, uint8_t *val)
{ {
int ret; int ret;
ret = i2c_write(chip, 0, 0, &reg, 1); ret = i2c_write(chip, 0, 0, &reg, 1);
if (ret == 0)
ret = i2c_read(chip, 0, 0, val, 1);
if (ret) if (ret)
return ret; ERROR("PMIC: Cannot read AXP805 register %02x\n", reg);
return i2c_read(chip, 0, 0, val, 1); return ret;
} }
int axp_i2c_write(uint8_t chip, uint8_t reg, uint8_t val) int axp_i2c_write(uint8_t chip, uint8_t reg, uint8_t val)
{ {
return i2c_write(chip, reg, 1, &val, 1); int ret;
ret = i2c_write(chip, reg, 1, &val, 1);
if (ret)
ERROR("PMIC: Cannot write AXP805 register %02x\n", reg);
return ret;
} }
static int axp805_probe(void) static int axp805_probe(void)
@ -49,21 +55,18 @@ static int axp805_probe(void)
int ret; int ret;
uint8_t val; uint8_t val;
/* Switch the AXP805 to master/single-PMIC mode. */
ret = axp_i2c_write(AXP805_ADDR, 0xff, 0x0); ret = axp_i2c_write(AXP805_ADDR, 0xff, 0x0);
if (ret) { if (ret)
ERROR("PMIC: Cannot put AXP805 to master mode.\n"); return ret;
return -EPERM;
}
ret = axp_i2c_read(AXP805_ADDR, AXP805_ID, &val); ret = axp_i2c_read(AXP805_ADDR, AXP805_ID, &val);
if (ret)
return ret;
if (!ret && ((val & 0xcf) == 0x40)) val &= 0xcf;
NOTICE("PMIC: AXP805 detected\n"); if (val != 0x40) {
else if (ret) { ERROR("PMIC: Found unknown PMIC %02x\n", val);
ERROR("PMIC: Cannot communicate with AXP805.\n");
return -EPERM;
} else {
ERROR("PMIC: Non-AXP805 chip attached at AXP805's address.\n");
return -EINVAL; return -EINVAL;
} }
@ -74,23 +77,25 @@ int sunxi_pmic_setup(uint16_t socid, const void *fdt)
{ {
int ret; int ret;
sunxi_init_platform_r_twi(SUNXI_SOC_H6, false); INFO("PMIC: Probing AXP805 on I2C\n");
ret = sunxi_init_platform_r_twi(SUNXI_SOC_H6, false);
if (ret)
return ret;
/* initialise mi2cv driver */ /* initialise mi2cv driver */
i2c_init((void *)SUNXI_R_I2C_BASE); i2c_init((void *)SUNXI_R_I2C_BASE);
NOTICE("PMIC: Probing AXP805\n");
pmic = AXP805;
ret = axp805_probe(); ret = axp805_probe();
if (ret) if (ret)
pmic = NO_PMIC; return ret;
else
pmic = AXP805; pmic = AXP805;
return 0; return 0;
} }
void __dead2 sunxi_power_down(void) void sunxi_power_down(void)
{ {
uint8_t val; uint8_t val;
@ -106,9 +111,4 @@ void __dead2 sunxi_power_down(void)
default: default:
break; break;
} }
udelay(1000);
ERROR("PSCI: Cannot communicate with PMIC, halting\n");
wfi();
panic();
} }