qemu/qemu_sbsa: add support for sbsa-ref Embedded Controller

This allows PSCI in TF-A to signal platform power states to QEMU
via a controller in secure space.

This required a sbsa-ref specific version of PSCI functions for the
platform. Also adjusted the MMU range to also include the new EC.

Add a new MMU region for the embedded controller and increase the
size of xlat tables by one for the new region.

Signed-off-by: Graeme Gregory <graeme@nuviainc.com>
Change-Id: Iece8a88947f11e82ab8988e460a8a66ad175a5ee
This commit is contained in:
Graeme Gregory 2020-08-28 18:03:35 +01:00
parent 5565ede44a
commit 2fb5ed4737
4 changed files with 247 additions and 4 deletions

View File

@ -161,10 +161,10 @@
#define PLAT_VIRT_ADDR_SPACE_SIZE (1ull << 42)
#if SPM_MM
#define MAX_MMAP_REGIONS 12
#define MAX_XLAT_TABLES 11
#define MAX_XLAT_TABLES 12
#else
#define MAX_MMAP_REGIONS 11
#define MAX_XLAT_TABLES 10
#define MAX_XLAT_TABLES 11
#endif
#define MAX_IO_DEVICES 3
#define MAX_IO_HANDLES 4
@ -207,7 +207,10 @@
#define DEVICE0_SIZE 0x04080000
/* This is map from NORMAL_UART up to SECURE_UART_MM */
#define DEVICE1_BASE 0x60000000
#define DEVICE1_SIZE 0x00041000
#define DEVICE1_SIZE 0x10041000
/* This is a map for SECURE_EC */
#define DEVICE2_BASE 0x50000000
#define DEVICE2_SIZE 0x00001000
/*
* GIC related constants

View File

@ -79,7 +79,7 @@ BL31_SOURCES += lib/cpus/aarch64/cortex_a57.S \
lib/semihosting/semihosting.c \
lib/semihosting/${ARCH}/semihosting_call.S \
plat/common/plat_psci_common.c \
${PLAT_QEMU_COMMON_PATH}/qemu_pm.c \
${PLAT_QEMU_PATH}/sbsa_pm.c \
${PLAT_QEMU_PATH}/sbsa_topology.c \
${PLAT_QEMU_COMMON_PATH}/aarch64/plat_helpers.S \
${PLAT_QEMU_COMMON_PATH}/qemu_bl31_setup.c \

View File

@ -0,0 +1,237 @@
/*
* Copyright (c) 2020, Nuvia Inc
* Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <lib/mmio.h>
#include <lib/psci/psci.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include "sbsa_private.h"
#define ADP_STOPPED_APPLICATION_EXIT 0x20026
/*
* Define offset and commands for the fake EC device
*/
#define SBSA_SECURE_EC_OFFSET 0x50000000
#define SBSA_SECURE_EC_CMD_SHUTDOWN 0x01
#define SBSA_SECURE_EC_CMD_REBOOT 0x02
/*
* The secure entry point to be used on warm reset.
*/
static unsigned long secure_entrypoint;
/* Make composite power state parameter till power level 0 */
#if PSCI_EXTENDED_STATE_ID
#define qemu_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type) \
(((lvl0_state) << PSTATE_ID_SHIFT) | \
((type) << PSTATE_TYPE_SHIFT))
#else
#define qemu_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type) \
(((lvl0_state) << PSTATE_ID_SHIFT) | \
((pwr_lvl) << PSTATE_PWR_LVL_SHIFT) | \
((type) << PSTATE_TYPE_SHIFT))
#endif /* PSCI_EXTENDED_STATE_ID */
#define qemu_make_pwrstate_lvl1(lvl1_state, lvl0_state, pwr_lvl, type) \
(((lvl1_state) << PLAT_LOCAL_PSTATE_WIDTH) | \
qemu_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type))
/*
* The table storing the valid idle power states. Ensure that the
* array entries are populated in ascending order of state-id to
* enable us to use binary search during power state validation.
* The table must be terminated by a NULL entry.
*/
static const unsigned int qemu_pm_idle_states[] = {
/* State-id - 0x01 */
qemu_make_pwrstate_lvl1(PLAT_LOCAL_STATE_RUN, PLAT_LOCAL_STATE_RET,
MPIDR_AFFLVL0, PSTATE_TYPE_STANDBY),
/* State-id - 0x02 */
qemu_make_pwrstate_lvl1(PLAT_LOCAL_STATE_RUN, PLAT_LOCAL_STATE_OFF,
MPIDR_AFFLVL0, PSTATE_TYPE_POWERDOWN),
/* State-id - 0x22 */
qemu_make_pwrstate_lvl1(PLAT_LOCAL_STATE_OFF, PLAT_LOCAL_STATE_OFF,
MPIDR_AFFLVL1, PSTATE_TYPE_POWERDOWN),
0
};
/*******************************************************************************
* Platform handler called to check the validity of the power state
* parameter. The power state parameter has to be a composite power state.
******************************************************************************/
static int qemu_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
unsigned int state_id;
unsigned int i;
assert(req_state != NULL);
/*
* Currently we are using a linear search for finding the matching
* entry in the idle power state array. This can be made a binary
* search if the number of entries justifies the additional complexity.
*/
for (i = 0U; qemu_pm_idle_states[i] != 0U; i++) {
if (power_state == qemu_pm_idle_states[i]) {
break;
}
}
/* Return error if entry not found in the idle state array */
if (qemu_pm_idle_states[i] == 0U) {
return PSCI_E_INVALID_PARAMS;
}
i = 0U;
state_id = psci_get_pstate_id(power_state);
/* Parse the State ID and populate the state info parameter */
while (state_id != 0U) {
req_state->pwr_domain_state[i++] = state_id &
PLAT_LOCAL_PSTATE_MASK;
state_id >>= PLAT_LOCAL_PSTATE_WIDTH;
}
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* Platform handler called when a CPU is about to enter standby.
******************************************************************************/
static void qemu_cpu_standby(plat_local_state_t cpu_state)
{
assert(cpu_state == PLAT_LOCAL_STATE_RET);
/*
* Enter standby state
* dsb is good practice before using wfi to enter low power states
*/
dsb();
wfi();
}
/*******************************************************************************
* Platform handler called when a power domain is about to be turned on. The
* mpidr determines the CPU to be turned on.
******************************************************************************/
static int qemu_pwr_domain_on(u_register_t mpidr)
{
int pos = plat_core_pos_by_mpidr(mpidr);
uint64_t *hold_base = (uint64_t *)PLAT_QEMU_HOLD_BASE;
if (pos < 0) {
return PSCI_E_INVALID_PARAMS;
}
hold_base[pos] = PLAT_QEMU_HOLD_STATE_GO;
dsb();
sev();
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* Platform handler called when a power domain is about to be turned off. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
static void qemu_pwr_domain_off(const psci_power_state_t *target_state)
{
qemu_pwr_gic_off();
}
void __dead2 plat_secondary_cold_boot_setup(void);
static void __dead2
qemu_pwr_domain_pwr_down_wfi(const psci_power_state_t *target_state)
{
disable_mmu_el3();
plat_secondary_cold_boot_setup();
}
/*******************************************************************************
* Platform handler called when a power domain is about to be suspended. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
void qemu_pwr_domain_suspend(const psci_power_state_t *target_state)
{
assert(false);
}
/*******************************************************************************
* Platform handler called when a power domain has just been powered on after
* being turned off earlier. The target_state encodes the low power state that
* each level has woken up from.
******************************************************************************/
void qemu_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
assert(target_state->pwr_domain_state[MPIDR_AFFLVL0] ==
PLAT_LOCAL_STATE_OFF);
qemu_pwr_gic_on_finish();
}
/*******************************************************************************
* Platform handler called when a power domain has just been powered on after
* having been suspended earlier. The target_state encodes the low power state
* that each level has woken up from.
******************************************************************************/
void qemu_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
{
assert(false);
}
/*******************************************************************************
* Platform handlers to shutdown/reboot the system
******************************************************************************/
static void __dead2 qemu_system_off(void)
{
mmio_write_32(SBSA_SECURE_EC_OFFSET, SBSA_SECURE_EC_CMD_SHUTDOWN);
panic();
}
static void __dead2 qemu_system_reset(void)
{
mmio_write_32(SBSA_SECURE_EC_OFFSET, SBSA_SECURE_EC_CMD_REBOOT);
panic();
}
static const plat_psci_ops_t plat_qemu_psci_pm_ops = {
.cpu_standby = qemu_cpu_standby,
.pwr_domain_on = qemu_pwr_domain_on,
.pwr_domain_off = qemu_pwr_domain_off,
.pwr_domain_pwr_down_wfi = qemu_pwr_domain_pwr_down_wfi,
.pwr_domain_suspend = qemu_pwr_domain_suspend,
.pwr_domain_on_finish = qemu_pwr_domain_on_finish,
.pwr_domain_suspend_finish = qemu_pwr_domain_suspend_finish,
.system_off = qemu_system_off,
.system_reset = qemu_system_reset,
.validate_power_state = qemu_validate_power_state
};
int plat_setup_psci_ops(uintptr_t sec_entrypoint,
const plat_psci_ops_t **psci_ops)
{
uintptr_t *mailbox = (uintptr_t *)PLAT_QEMU_TRUSTED_MAILBOX_BASE;
*mailbox = sec_entrypoint;
secure_entrypoint = (unsigned long)sec_entrypoint;
*psci_ops = &plat_qemu_psci_pm_ops;
return 0;
}

View File

@ -11,4 +11,7 @@
unsigned int plat_qemu_calc_core_pos(u_register_t mpidr);
void qemu_pwr_gic_on_finish(void);
void qemu_pwr_gic_off(void);
#endif /* SBSA_PRIVATE_H */