NXP: SFP driver support for NXP SoC

NXP Security Fuse Processor is used to read and write
fuses.
- Fuses once written, are cannot be un-done.
- Used as trust anchor for monotonic counter,
  different platform keys etc.

Signed-off-by: Udit Agarwal <udit.agarwal@nxp.com>
Signed-off-by: Ruchika Gupta <ruchika.gupta@nxp.com>
Signed-off-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Change-Id: I347e806dd87078150fbbbfc28355bb44d9eacb9c
This commit is contained in:
Pankaj Gupta 2020-12-09 14:02:38 +05:30
parent 76f735fd82
commit 3979c6d924
6 changed files with 887 additions and 0 deletions

462
drivers/nxp/sfp/fuse_prov.c Normal file
View File

@ -0,0 +1,462 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <caam.h>
#include <common/debug.h>
#include <dcfg.h>
#include <drivers/delay_timer.h>
#include <fuse_prov.h>
#include <sfp.h>
#include <sfp_error_codes.h>
static int write_a_fuse(uint32_t *fuse_addr, uint32_t *fuse_hdr_val,
uint32_t mask)
{
uint32_t last_stored_val = sfp_read32(fuse_addr);
/* Check if fuse already blown or not */
if ((last_stored_val & mask) == mask) {
return ERROR_ALREADY_BLOWN;
}
/* Write fuse in mirror registers */
sfp_write32(fuse_addr, last_stored_val | (*fuse_hdr_val & mask));
/* Read back to check if write success */
if (sfp_read32(fuse_addr) != (last_stored_val | (*fuse_hdr_val & mask))) {
return ERROR_WRITE;
}
return 0;
}
static int write_fuses(uint32_t *fuse_addr, uint32_t *fuse_hdr_val, uint8_t len)
{
int i;
/* Check if fuse already blown or not */
for (i = 0; i < len; i++) {
if (sfp_read32(&fuse_addr[i]) != 0) {
return ERROR_ALREADY_BLOWN;
}
}
/* Write fuse in mirror registers */
for (i = 0; i < len; i++) {
sfp_write32(&fuse_addr[i], fuse_hdr_val[i]);
}
/* Read back to check if write success */
for (i = 0; i < len; i++) {
if (sfp_read32(&fuse_addr[i]) != fuse_hdr_val[i]) {
return ERROR_WRITE;
}
}
return 0;
}
/*
* This function program Super Root Key Hash (SRKH) in fuse
* registers.
*/
static int prog_srkh(struct fuse_hdr_t *fuse_hdr,
struct sfp_ccsr_regs_t *sfp_ccsr_regs)
{
int ret = 0;
ret = write_fuses(sfp_ccsr_regs->srk_hash, fuse_hdr->srkh, 8);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_SRKH_ALREADY_BLOWN : ERROR_SRKH_WRITE;
}
return ret;
}
/* This function program OEMUID[0-4] in fuse registers. */
static int prog_oemuid(struct fuse_hdr_t *fuse_hdr,
struct sfp_ccsr_regs_t *sfp_ccsr_regs)
{
int i, ret = 0;
for (i = 0; i < 5; i++) {
/* Check OEMUIDx to be blown or not */
if (((fuse_hdr->flags >> (FLAG_OUID0_SHIFT + i)) & 0x1) != 0) {
/* Check if OEMUID[i] already blown or not */
ret = write_fuses(&sfp_ccsr_regs->oem_uid[i],
&fuse_hdr->oem_uid[i], 1);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_OEMUID_ALREADY_BLOWN
: ERROR_OEMUID_WRITE;
}
}
}
return ret;
}
/* This function program DCV[0-1], DRV[0-1] in fuse registers. */
static int prog_debug(struct fuse_hdr_t *fuse_hdr,
struct sfp_ccsr_regs_t *sfp_ccsr_regs)
{
int ret;
/* Check DCV to be blown or not */
if (((fuse_hdr->flags >> (FLAG_DCV0_SHIFT)) & 0x3) != 0) {
/* Check if DCV[i] already blown or not */
ret = write_fuses(sfp_ccsr_regs->dcv, fuse_hdr->dcv, 2);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_DCV_ALREADY_BLOWN
: ERROR_DCV_WRITE;
}
}
/* Check DRV to be blown or not */
if ((((fuse_hdr->flags >> (FLAG_DRV0_SHIFT)) & 0x3)) != 0) {
/* Check if DRV[i] already blown or not */
ret = write_fuses(sfp_ccsr_regs->drv, fuse_hdr->drv, 2);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_DRV_ALREADY_BLOWN
: ERROR_DRV_WRITE;
} else {
/* Check for DRV hamming error */
if (sfp_read32((void *)(get_sfp_addr()
+ SFP_SVHESR_OFFSET))
& SFP_SVHESR_DRV_MASK) {
return ERROR_DRV_HAMMING_ERROR;
}
}
}
return 0;
}
/*
* Turn a 256-bit random value (32 bytes) into an OTPMK code word
* modifying the input data array in place
*/
static void otpmk_make_code_word_256(uint8_t *otpmk, bool minimal_flag)
{
int i;
uint8_t parity_bit;
uint8_t code_bit;
if (minimal_flag == true) {
/*
* Force bits 252, 253, 254 and 255 to 1
* This is because these fuses may have already been blown
* and the OTPMK cannot force them back to 0
*/
otpmk[252/8] |= (1 << (252%8));
otpmk[253/8] |= (1 << (253%8));
otpmk[254/8] |= (1 << (254%8));
otpmk[255/8] |= (1 << (255%8));
}
/* Generate the hamming code for the code word */
parity_bit = 0;
code_bit = 0;
for (i = 0; i < 256; i += 1) {
if ((otpmk[i/8] & (1 << (i%8))) != 0) {
parity_bit ^= 1;
code_bit ^= i;
}
}
/* Inverting otpmk[code_bit] will cause the otpmk
* to become a valid code word (except for overall parity)
*/
if (code_bit < 252) {
otpmk[code_bit/8] ^= (1 << (code_bit % 8));
parity_bit ^= 1; // account for flipping a bit changing parity
} else {
/* Invert two bits: (code_bit - 4) and 4
* Because we invert two bits, no need to touch the parity bit
*/
otpmk[(code_bit - 4)/8] ^= (1 << ((code_bit - 4) % 8));
otpmk[4/8] ^= (1 << (4 % 8));
}
/* Finally, adjust the overall parity of the otpmk
* otpmk bit 0
*/
otpmk[0] ^= parity_bit;
}
/* This function program One Time Programmable Master Key (OTPMK)
* in fuse registers.
*/
static int prog_otpmk(struct fuse_hdr_t *fuse_hdr,
struct sfp_ccsr_regs_t *sfp_ccsr_regs)
{
int ret = 0;
uint32_t otpmk_flags;
uint32_t otpmk_random[8] __aligned(CACHE_WRITEBACK_GRANULE);
otpmk_flags = (fuse_hdr->flags >> (FLAG_OTPMK_SHIFT)) & FLAG_OTPMK_MASK;
switch (otpmk_flags) {
case PROG_OTPMK_MIN:
memset(fuse_hdr->otpmk, 0, sizeof(fuse_hdr->otpmk));
/* Minimal OTPMK value (252-255 bits set to 1) */
fuse_hdr->otpmk[0] |= OTPMK_MIM_BITS_MASK;
break;
case PROG_OTPMK_RANDOM:
if (is_sec_enabled() == false) {
ret = ERROR_OTPMK_SEC_DISABLED;
goto out;
}
/* Generate Random number using CAAM for OTPMK */
memset(otpmk_random, 0, sizeof(otpmk_random));
if (get_rand_bytes_hw((uint8_t *)otpmk_random,
sizeof(otpmk_random)) != 0) {
ret = ERROR_OTPMK_SEC_ERROR;
goto out;
}
/* Run hamming over random no. to make OTPMK */
otpmk_make_code_word_256((uint8_t *)otpmk_random, false);
/* Swap OTPMK */
fuse_hdr->otpmk[0] = otpmk_random[7];
fuse_hdr->otpmk[1] = otpmk_random[6];
fuse_hdr->otpmk[2] = otpmk_random[5];
fuse_hdr->otpmk[3] = otpmk_random[4];
fuse_hdr->otpmk[4] = otpmk_random[3];
fuse_hdr->otpmk[5] = otpmk_random[2];
fuse_hdr->otpmk[6] = otpmk_random[1];
fuse_hdr->otpmk[7] = otpmk_random[0];
break;
case PROG_OTPMK_USER:
break;
case PROG_OTPMK_RANDOM_MIN:
/* Here assumption is that user is aware of minimal OTPMK
* already blown.
*/
/* Generate Random number using CAAM for OTPMK */
if (is_sec_enabled() == false) {
ret = ERROR_OTPMK_SEC_DISABLED;
goto out;
}
memset(otpmk_random, 0, sizeof(otpmk_random));
if (get_rand_bytes_hw((uint8_t *)otpmk_random,
sizeof(otpmk_random)) != 0) {
ret = ERROR_OTPMK_SEC_ERROR;
goto out;
}
/* Run hamming over random no. to make OTPMK */
otpmk_make_code_word_256((uint8_t *)otpmk_random, true);
/* Swap OTPMK */
fuse_hdr->otpmk[0] = otpmk_random[7];
fuse_hdr->otpmk[1] = otpmk_random[6];
fuse_hdr->otpmk[2] = otpmk_random[5];
fuse_hdr->otpmk[3] = otpmk_random[4];
fuse_hdr->otpmk[4] = otpmk_random[3];
fuse_hdr->otpmk[5] = otpmk_random[2];
fuse_hdr->otpmk[6] = otpmk_random[1];
fuse_hdr->otpmk[7] = otpmk_random[0];
break;
case PROG_OTPMK_USER_MIN:
/*
* Here assumption is that user is aware of minimal OTPMK
* already blown. Check if minimal bits are set in user
* supplied OTPMK.
*/
if ((fuse_hdr->otpmk[0] & OTPMK_MIM_BITS_MASK) !=
OTPMK_MIM_BITS_MASK) {
ret = ERROR_OTPMK_USER_MIN;
goto out;
}
break;
default:
ret = 0;
goto out;
}
ret = write_fuses(sfp_ccsr_regs->otpmk, fuse_hdr->otpmk, 8);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_OTPMK_ALREADY_BLOWN
: ERROR_OTPMK_WRITE;
} else {
/* Check for DRV hamming error */
if ((sfp_read32((void *)(get_sfp_addr() + SFP_SVHESR_OFFSET))
& SFP_SVHESR_OTPMK_MASK) != 0) {
ret = ERROR_OTPMK_HAMMING_ERROR;
}
}
out:
return ret;
}
/* This function program OSPR1 in fuse registers.
*/
static int prog_ospr1(struct fuse_hdr_t *fuse_hdr,
struct sfp_ccsr_regs_t *sfp_ccsr_regs)
{
int ret;
uint32_t mask;
#ifdef NXP_SFP_VER_3_4
if (((fuse_hdr->flags >> FLAG_MC_SHIFT) & 0x1) != 0) {
mask = OSPR1_MC_MASK;
}
#endif
if (((fuse_hdr->flags >> FLAG_DBG_LVL_SHIFT) & 0x1) != 0) {
mask = mask | OSPR1_DBG_LVL_MASK;
}
ret = write_a_fuse(&sfp_ccsr_regs->ospr1, &fuse_hdr->ospr1, mask);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_OSPR1_ALREADY_BLOWN
: ERROR_OSPR1_WRITE;
}
return ret;
}
/* This function program SYSCFG in fuse registers.
*/
static int prog_syscfg(struct fuse_hdr_t *fuse_hdr,
struct sfp_ccsr_regs_t *sfp_ccsr_regs)
{
int ret;
/* Check if SYSCFG already blown or not */
ret = write_a_fuse(&sfp_ccsr_regs->ospr, &fuse_hdr->sc, OSPR0_SC_MASK);
if (ret != 0) {
ret = (ret == ERROR_ALREADY_BLOWN) ?
ERROR_SC_ALREADY_BLOWN
: ERROR_SC_WRITE;
}
return ret;
}
/* This function does fuse provisioning.
*/
int provision_fuses(unsigned long long fuse_scr_addr,
bool en_povdd_status)
{
struct fuse_hdr_t *fuse_hdr = NULL;
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(get_sfp_addr()
+ SFP_FUSE_REGS_OFFSET);
int ret = 0;
fuse_hdr = (struct fuse_hdr_t *)fuse_scr_addr;
/*
* Check for Write Protect (WP) fuse. If blown then do
* no fuse provisioning.
*/
if ((sfp_read32(&sfp_ccsr_regs->ospr) & 0x1) != 0) {
goto out;
}
/* Check if SRKH to be blown or not */
if (((fuse_hdr->flags >> FLAG_SRKH_SHIFT) & 0x1) != 0) {
INFO("Fuse: Program SRKH\n");
ret = prog_srkh(fuse_hdr, sfp_ccsr_regs);
if (ret != 0) {
error_handler(ret);
goto out;
}
}
/* Check if OEMUID to be blown or not */
if (((fuse_hdr->flags >> FLAG_OUID0_SHIFT) & FLAG_OUID_MASK) != 0) {
INFO("Fuse: Program OEMUIDs\n");
ret = prog_oemuid(fuse_hdr, sfp_ccsr_regs);
if (ret != 0) {
error_handler(ret);
goto out;
}
}
/* Check if Debug values to be blown or not */
if (((fuse_hdr->flags >> FLAG_DCV0_SHIFT) & FLAG_DEBUG_MASK) != 0) {
INFO("Fuse: Program Debug values\n");
ret = prog_debug(fuse_hdr, sfp_ccsr_regs);
if (ret != 0) {
error_handler(ret);
goto out;
}
}
/* Check if OTPMK values to be blown or not */
if (((fuse_hdr->flags >> FLAG_OTPMK_SHIFT) & PROG_NO_OTPMK) !=
PROG_NO_OTPMK) {
INFO("Fuse: Program OTPMK\n");
ret = prog_otpmk(fuse_hdr, sfp_ccsr_regs);
if (ret != 0) {
error_handler(ret);
goto out;
}
}
/* Check if MC or DBG LVL to be blown or not */
if ((((fuse_hdr->flags >> FLAG_MC_SHIFT) & 0x1) != 0) ||
(((fuse_hdr->flags >> FLAG_DBG_LVL_SHIFT) & 0x1) != 0)) {
INFO("Fuse: Program OSPR1\n");
ret = prog_ospr1(fuse_hdr, sfp_ccsr_regs);
if (ret != 0) {
error_handler(ret);
goto out;
}
}
/* Check if SYSCFG to be blown or not */
if (((fuse_hdr->flags >> FLAG_SYSCFG_SHIFT) & 0x1) != 0) {
INFO("Fuse: Program SYSCFG\n");
ret = prog_syscfg(fuse_hdr, sfp_ccsr_regs);
if (ret != 0) {
error_handler(ret);
goto out;
}
}
if (en_povdd_status) {
ret = sfp_program_fuses();
if (ret != 0) {
error_handler(ret);
goto out;
}
}
out:
return ret;
}

View File

@ -0,0 +1,83 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#if !defined(FUSE_PROV_H) && defined(POLICY_FUSE_PROVISION)
#define FUSE_PROV_H
#include <endian.h>
#include <lib/mmio.h>
#define MASK_NONE U(0xFFFFFFFF)
#define ERROR_WRITE U(0xA)
#define ERROR_ALREADY_BLOWN U(0xB)
/* Flag bit shifts */
#define FLAG_POVDD_SHIFT U(0)
#define FLAG_SYSCFG_SHIFT U(1)
#define FLAG_SRKH_SHIFT U(2)
#define FLAG_MC_SHIFT U(3)
#define FLAG_DCV0_SHIFT U(4)
#define FLAG_DCV1_SHIFT U(5)
#define FLAG_DRV0_SHIFT U(6)
#define FLAG_DRV1_SHIFT U(7)
#define FLAG_OUID0_SHIFT U(8)
#define FLAG_OUID1_SHIFT U(9)
#define FLAG_OUID2_SHIFT U(10)
#define FLAG_OUID3_SHIFT U(11)
#define FLAG_OUID4_SHIFT U(12)
#define FLAG_DBG_LVL_SHIFT U(13)
#define FLAG_OTPMK_SHIFT U(16)
#define FLAG_OUID_MASK U(0x1F)
#define FLAG_DEBUG_MASK U(0xF)
#define FLAG_OTPMK_MASK U(0xF)
/* OTPMK flag values */
#define PROG_OTPMK_MIN U(0x0)
#define PROG_OTPMK_RANDOM U(0x1)
#define PROG_OTPMK_USER U(0x2)
#define PROG_OTPMK_RANDOM_MIN U(0x5)
#define PROG_OTPMK_USER_MIN U(0x6)
#define PROG_NO_OTPMK U(0x8)
#define OTPMK_MIM_BITS_MASK U(0xF0000000)
/* System configuration bit shifts */
#define SCB_WP_SHIFT U(0)
#define SCB_ITS_SHIFT U(2)
#define SCB_NSEC_SHIFT U(4)
#define SCB_ZD_SHIFT U(5)
#define SCB_K0_SHIFT U(15)
#define SCB_K1_SHIFT U(14)
#define SCB_K2_SHIFT U(13)
#define SCB_K3_SHIFT U(12)
#define SCB_K4_SHIFT U(11)
#define SCB_K5_SHIFT U(10)
#define SCB_K6_SHIFT U(9)
#define SCB_FR0_SHIFT U(30)
#define SCB_FR1_SHIFT U(31)
/* Fuse Header Structure */
struct fuse_hdr_t {
uint8_t barker[4]; /* 0x00 Barker code */
uint32_t flags; /* 0x04 Script flags */
uint32_t povdd_gpio; /* 0x08 GPIO for POVDD */
uint32_t otpmk[8]; /* 0x0C-0x2B OTPMK */
uint32_t srkh[8]; /* 0x2C-0x4B SRKH */
uint32_t oem_uid[5]; /* 0x4C-0x5F OEM unique id's */
uint32_t dcv[2]; /* 0x60-0x67 Debug Challenge */
uint32_t drv[2]; /* 0x68-0x6F Debug Response */
uint32_t ospr1; /* 0x70 OSPR1 */
uint32_t sc; /* 0x74 OSPR0 (System Configuration) */
uint32_t reserved[2]; /* 0x78-0x7F Reserved */
};
/* Function to do fuse provisioning */
int provision_fuses(unsigned long long fuse_scr_addr,
bool en_povdd_status);
#define EFUSE_POWERUP_DELAY_mSec U(25)
#endif /* FUSE_PROV_H */

167
drivers/nxp/sfp/sfp.c Normal file
View File

@ -0,0 +1,167 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <caam.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <sfp.h>
#include <sfp_error_codes.h>
static uintptr_t g_nxp_sfp_addr;
static uint32_t srk_hash[SRK_HASH_SIZE/sizeof(uint32_t)]
__aligned(CACHE_WRITEBACK_GRANULE);
void sfp_init(uintptr_t nxp_sfp_addr)
{
g_nxp_sfp_addr = nxp_sfp_addr;
}
uintptr_t get_sfp_addr(void)
{
return g_nxp_sfp_addr;
}
uint32_t *get_sfp_srk_hash(void)
{
struct sfp_ccsr_regs_t *sfp_ccsr_regs =
(void *) (g_nxp_sfp_addr + SFP_FUSE_REGS_OFFSET);
int i = 0;
/* Add comparison of hash with SFP hash here */
for (i = 0; i < SRK_HASH_SIZE/sizeof(uint32_t); i++)
srk_hash[i] =
mmio_read_32((uintptr_t)&sfp_ccsr_regs->srk_hash[i]);
return srk_hash;
}
void set_sfp_wr_disable(void)
{
/*
* Mark SFP Write Disable and Write Disable Lock
* Bit to prevent write to SFP fuses like
* OUID's, Key Revocation fuse etc
*/
void *sfpcr = (void *)(g_nxp_sfp_addr + SFP_SFPCR_OFFSET);
uint32_t sfpcr_val;
sfpcr_val = sfp_read32(sfpcr);
sfpcr_val |= (SFP_SFPCR_WD | SFP_SFPCR_WDL);
sfp_write32(sfpcr, sfpcr_val);
}
int sfp_program_fuses(void)
{
uint32_t ingr;
uint32_t sfp_cmd_status = 0U;
int ret = 0;
/* Program SFP fuses from mirror registers */
sfp_write32((void *)(g_nxp_sfp_addr + SFP_INGR_OFFSET),
SFP_INGR_PROGFB_CMD);
/* Wait until fuse programming is successful */
do {
ingr = sfp_read32(g_nxp_sfp_addr + SFP_INGR_OFFSET);
} while (ingr & SFP_INGR_PROGFB_CMD);
/* Check for SFP fuse programming error */
sfp_cmd_status = sfp_read32(g_nxp_sfp_addr + SFP_INGR_OFFSET)
& SFP_INGR_ERROR_MASK;
if (sfp_cmd_status != 0U) {
return ERROR_PROGFB_CMD;
}
return ret;
}
uint32_t sfp_read_oem_uid(uint8_t oem_uid)
{
uint32_t val = 0U;
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(g_nxp_sfp_addr
+ SFP_FUSE_REGS_OFFSET);
if (oem_uid > MAX_OEM_UID) {
ERROR("Invalid OEM UID received.\n");
return ERROR_OEMUID_WRITE;
}
val = sfp_read32(&sfp_ccsr_regs->oem_uid[oem_uid]);
return val;
}
/*
* return val: 0 - No update required.
* 1 - successful update done.
* ERROR_OEMUID_WRITE - Invalid OEM UID
*/
uint32_t sfp_write_oem_uid(uint8_t oem_uid, uint32_t sfp_val)
{
uint32_t val = 0U;
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(g_nxp_sfp_addr
+ SFP_FUSE_REGS_OFFSET);
val = sfp_read_oem_uid(oem_uid);
if (val == ERROR_OEMUID_WRITE) {
return ERROR_OEMUID_WRITE;
}
/* Counter already set. No need to do anything */
if ((val & sfp_val) != 0U) {
return 0U;
}
val |= sfp_val;
INFO("SFP Value is %x for setting sfp_val = %d\n", val, sfp_val);
sfp_write32(&sfp_ccsr_regs->oem_uid[oem_uid], val);
return 1U;
}
int sfp_check_its(void)
{
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(g_nxp_sfp_addr
+ SFP_FUSE_REGS_OFFSET);
if ((sfp_read32(&sfp_ccsr_regs->ospr) & OSPR_ITS_MASK) != 0) {
return 1;
} else {
return 0;
}
}
int sfp_check_oem_wp(void)
{
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(g_nxp_sfp_addr
+ SFP_FUSE_REGS_OFFSET);
if ((sfp_read32(&sfp_ccsr_regs->ospr) & OSPR_WP_MASK) != 0) {
return 1;
} else {
return 0;
}
}
/* This function returns ospr's key_revoc values.*/
uint32_t get_key_revoc(void)
{
struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(g_nxp_sfp_addr
+ SFP_FUSE_REGS_OFFSET);
return (sfp_read32(&sfp_ccsr_regs->ospr) & OSPR_KEY_REVOC_MASK) >>
OSPR_KEY_REVOC_SHIFT;
}

100
drivers/nxp/sfp/sfp.h Normal file
View File

@ -0,0 +1,100 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef SFP_H
#define SFP_H
#include <endian.h>
#include <lib/mmio.h>
/* SFP Configuration Register Offsets */
#define SFP_INGR_OFFSET U(0x20)
#define SFP_SVHESR_OFFSET U(0x24)
#define SFP_SFPCR_OFFSET U(0x28)
#define SFP_VER_OFFSET U(0x38)
/* SFP Hamming register masks for OTPMK and DRV */
#define SFP_SVHESR_DRV_MASK U(0x7F)
#define SFP_SVHESR_OTPMK_MASK U(0x7FC00)
/* SFP commands */
#define SFP_INGR_READFB_CMD U(0x1)
#define SFP_INGR_PROGFB_CMD U(0x2)
#define SFP_INGR_ERROR_MASK U(0x100)
/* SFPCR Masks */
#define SFP_SFPCR_WD U(0x80000000)
#define SFP_SFPCR_WDL U(0x40000000)
/* SFPCR Masks */
#define SFP_SFPCR_WD U(0x80000000)
#define SFP_SFPCR_WDL U(0x40000000)
#define SFP_FUSE_REGS_OFFSET U(0x200)
#ifdef NXP_SFP_VER_3_4
#define OSPR0_SC_MASK U(0xC000FE35)
#elif defined(NXP_SFP_VER_3_2)
#define OSPR0_SC_MASK U(0x0000E035)
#endif
#if defined(NXP_SFP_VER_3_4)
#define OSPR_KEY_REVOC_SHIFT U(9)
#define OSPR_KEY_REVOC_MASK U(0x0000fe00)
#elif defined(NXP_SFP_VER_3_2)
#define OSPR_KEY_REVOC_SHIFT U(13)
#define OSPR_KEY_REVOC_MASK U(0x0000e000)
#endif /* NXP_SFP_VER_3_4 */
#define OSPR1_MC_MASK U(0xFFFF0000)
#define OSPR1_DBG_LVL_MASK U(0x00000007)
#define OSPR_ITS_MASK U(0x00000004)
#define OSPR_WP_MASK U(0x00000001)
#define MAX_OEM_UID U(5)
#define SRK_HASH_SIZE U(32)
/* SFP CCSR Register Map */
struct sfp_ccsr_regs_t {
uint32_t ospr; /* 0x200 OSPR0 */
uint32_t ospr1; /* 0x204 OSPR1 */
uint32_t dcv[2]; /* 0x208 Debug Challenge Value */
uint32_t drv[2]; /* 0x210 Debug Response Value */
uint32_t fswpr; /* 0x218 FSL Section Write Protect */
uint32_t fsl_uid[2]; /* 0x21c FSL UID 0 */
uint32_t isbcr; /* 0x224 ISBC Configuration */
uint32_t fsspr[3]; /* 0x228 FSL Scratch Pad */
uint32_t otpmk[8]; /* 0x234 OTPMK */
uint32_t srk_hash[SRK_HASH_SIZE/sizeof(uint32_t)];
/* 0x254 Super Root Key Hash */
uint32_t oem_uid[MAX_OEM_UID]; /* 0x274 OEM UID 0 */
};
uintptr_t get_sfp_addr(void);
void sfp_init(uintptr_t nxp_sfp_addr);
uint32_t *get_sfp_srk_hash(void);
int sfp_check_its(void);
int sfp_check_oem_wp(void);
uint32_t get_key_revoc(void);
void set_sfp_wr_disable(void);
int sfp_program_fuses(void);
uint32_t sfp_read_oem_uid(uint8_t oem_uid);
uint32_t sfp_write_oem_uid(uint8_t oem_uid, uint32_t sfp_val);
#ifdef NXP_SFP_BE
#define sfp_read32(a) bswap32(mmio_read_32((uintptr_t)(a)))
#define sfp_write32(a, v) mmio_write_32((uintptr_t)(a), bswap32(v))
#elif defined(NXP_SFP_LE)
#define sfp_read32(a) mmio_read_32((uintptr_t)(a))
#define sfp_write32(a, v) mmio_write_32((uintptr_t)(a), (v))
#else
#error Please define CCSR SFP register endianness
#endif
#endif/* SFP_H */

35
drivers/nxp/sfp/sfp.mk Normal file
View File

@ -0,0 +1,35 @@
#
# Copyright 2020 NXP
#
# SPDX-License-Identifier: BSD-3-Clause
#
#-----------------------------------------------------------------------------
ifeq (${SFP_ADDED},)
SFP_ADDED := 1
$(eval $(call add_define, NXP_SFP_ENABLED))
SFP_DRIVERS_PATH := ${PLAT_DRIVERS_PATH}/sfp
PLAT_INCLUDES += -I$(SFP_DRIVERS_PATH)
SFP_SOURCES += $(SFP_DRIVERS_PATH)/sfp.c
ifeq (${FUSE_PROG}, 1)
SFP_BL2_SOURCES += $(SFP_DRIVERS_PATH)/fuse_prov.c
endif
ifeq (${BL_COMM_SFP_NEEDED},yes)
BL_COMMON_SOURCES += ${SFP_SOURCES}
BL2_SOURCES += ${SFP_BL2_SOURCES}
else
ifeq (${BL2_SFP_NEEDED},yes)
BL2_SOURCES += ${SFP_SOURCES}\
${SFP_BL2_SOURCES}
endif
ifeq (${BL31_SFP_NEEDED},yes)
BL31_SOURCES += ${SFP_SOURCES}
endif
endif
endif
#------------------------------------------------

View File

@ -0,0 +1,40 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef SFP_ERROR_CODES_H
#define SFP_ERROR_CODES_H
/* Error codes */
#define ERROR_FUSE_BARKER 0x1
#define ERROR_READFB_CMD 0x2
#define ERROR_PROGFB_CMD 0x3
#define ERROR_SRKH_ALREADY_BLOWN 0x4
#define ERROR_SRKH_WRITE 0x5
#define ERROR_OEMUID_ALREADY_BLOWN 0x6
#define ERROR_OEMUID_WRITE 0x7
#define ERROR_DCV_ALREADY_BLOWN 0x8
#define ERROR_DCV_WRITE 0x9
#define ERROR_DRV_ALREADY_BLOWN 0xa
#define ERROR_DRV_HAMMING_ERROR 0xb
#define ERROR_DRV_WRITE 0x18
#define ERROR_OTPMK_ALREADY_BLOWN 0xc
#define ERROR_OTPMK_HAMMING_ERROR 0xd
#define ERROR_OTPMK_USER_MIN 0xe
#define ERROR_OSPR1_ALREADY_BLOWN 0xf
#define ERROR_OSPR1_WRITE 0x10
#define ERROR_SC_ALREADY_BLOWN 0x11
#define ERROR_SC_WRITE 0x12
#define ERROR_POVDD_GPIO_FAIL 0x13
#define ERROR_GPIO_SET_FAIL 0x14
#define ERROR_GPIO_RESET_FAIL 0x15
#define ERROR_OTPMK_SEC_DISABLED 0x16
#define ERROR_OTPMK_SEC_ERROR 0x17
#define ERROR_OTPMK_WRITE 0x19
#define PLAT_ERROR_ENABLE_POVDD 0x20
#define PLAT_ERROR_DISABLE_POVDD 0x21
#endif /* SFP_ERROR_CODES_H */