mediatek: mt8192: add sys_cirq driver

1.add sys_cirq driver
2.add gic api for cirq

Change-Id: Ie6802d6ddcf7dde3412a050736dfdc85f97cb51b
Signed-off-by: gtk_pangao <gtk_pangao@mediatek.com>
This commit is contained in:
gtk_pangao 2019-12-19 15:58:20 +08:00 committed by Nina Wu
parent 054af8f233
commit b6cec33785
5 changed files with 599 additions and 0 deletions

View File

@ -21,4 +21,7 @@ void mt_gic_rdistif_restore(void);
void mt_gic_rdistif_restore_all(void);
void gic_sgi_save_all(void);
void gic_sgi_restore_all(void);
uint32_t mt_irq_get_pending(uint32_t irq);
void mt_irq_set_pending(uint32_t irq);
#endif /* MT_GIC_V3_H */

View File

@ -0,0 +1,82 @@
/*
* Copyright (c) 2020, MediaTek Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef PLAT_MT_CIRQ_H
#define PLAT_MT_CIRQ_H
#define SYS_CIRQ_BASE U(0x10204000)
#define CIRQ_IRQ_NUM U(439)
#define CIRQ_SPI_START U(96)
/*
* Define hardware register
*/
#define CIRQ_STA_BASE U(0x000)
#define CIRQ_ACK_BASE U(0x080)
#define CIRQ_MASK_BASE U(0x100)
#define CIRQ_MASK_SET_BASE U(0x180)
#define CIRQ_MASK_CLR_BASE U(0x200)
#define CIRQ_SENS_BASE U(0x280)
#define CIRQ_SENS_SET_BASE U(0x300)
#define CIRQ_SENS_CLR_BASE U(0x380)
#define CIRQ_POL_BASE U(0x400)
#define CIRQ_POL_SET_BASE U(0x480)
#define CIRQ_POL_CLR_BASE U(0x500)
#define CIRQ_CON U(0x600)
/*
* Register placement
*/
#define CIRQ_CON_EN_BITS U(0)
#define CIRQ_CON_EDGE_ONLY_BITS U(1)
#define CIRQ_CON_FLUSH_BITS U(2)
#define CIRQ_CON_EVENT_BITS U(31)
#define CIRQ_CON_SW_RST_BITS U(20)
#define CIRQ_CON_BITS_MASK U(0x7)
/*
* Register setting
*/
#define CIRQ_CON_EN U(0x1)
#define CIRQ_CON_EDGE_ONLY U(0x1)
#define CIRQ_SW_RESET U(0x1)
#define CIRQ_CON_FLUSH U(0x1)
/*
* Define constant
*/
#define CIRQ_CTRL_REG_NUM ((CIRQ_IRQ_NUM + 31U) / 32U)
#define MT_CIRQ_POL_NEG U(0)
#define MT_CIRQ_POL_POS U(1)
#define MT_CIRQ_EDGE_SENSITIVE U(0)
#define MT_CIRQ_LEVEL_SENSITIVE U(1)
/*
* Define macro
*/
#define IRQ_TO_CIRQ_NUM(irq) ((irq) - (CIRQ_SPI_START))
#define CIRQ_TO_IRQ_NUM(cirq) ((cirq) + (CIRQ_SPI_START))
/*
* Define cirq events
*/
struct cirq_events {
uint32_t spi_start;
uint32_t num_of_events;
uint32_t *wakeup_events;
};
/*
* Define function prototypes.
*/
void mt_cirq_enable(void);
void mt_cirq_disable(void);
void mt_cirq_clone_gic(void);
void mt_cirq_flush(void);
void mt_cirq_sw_reset(void);
void set_wakeup_sources(uint32_t *list, uint32_t num_of_events);
void mt_cirq_dump_reg(void);
#endif /* PLAT_MT_CIRQ_H */

View File

@ -0,0 +1,494 @@
/*
* Copyright (c) 2020, MediaTek Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/arm/gic_common.h>
#include <drivers/console.h>
#include <lib/mmio.h>
#include <mt_gic_v3.h>
#include <mtk_plat_common.h>
#include <plat_mt_cirq.h>
#include <platform_def.h>
static struct cirq_events cirq_all_events = {
.spi_start = CIRQ_SPI_START
};
static inline void mt_cirq_write32(uint32_t val, uint32_t addr)
{
mmio_write_32(addr + SYS_CIRQ_BASE, val);
}
static inline uint32_t mt_cirq_read32(uint32_t addr)
{
return mmio_read_32(addr + SYS_CIRQ_BASE);
}
/*
* cirq_clone_flush_check_store:
* set 1 if we need to enable clone/flush value's check
*/
static int32_t cirq_clone_flush_check_val;
/*
* cirq_pattern_clone_flush_check_show: set 1 if we need to do pattern test.
*/
static int32_t cirq_pattern_clone_flush_check_val;
/*
* cirq_pattern_clone_flush_check_show: set 1 if we need to do pattern test.
*/
static int32_t cirq_pattern_list;
/*
* mt_cirq_ack_all: Ack all the interrupt on SYS_CIRQ
*/
void mt_cirq_ack_all(void)
{
unsigned int i;
for (i = 0U; i < CIRQ_CTRL_REG_NUM; i++) {
mt_cirq_write32(0xFFFFFFFF, CIRQ_ACK_BASE + (i * 4U));
}
/* make sure all cirq setting take effect before doing other things */
dmbsy();
}
/*
* mt_cirq_enable: Enable SYS_CIRQ
*/
void mt_cirq_enable(void)
{
uint32_t st;
mt_cirq_ack_all();
st = mt_cirq_read32(CIRQ_CON);
st |= (CIRQ_CON_EN << CIRQ_CON_EN_BITS) |
(CIRQ_CON_EDGE_ONLY << CIRQ_CON_EDGE_ONLY_BITS);
mt_cirq_write32((st & CIRQ_CON_BITS_MASK), CIRQ_CON);
}
/*
* mt_cirq_disable: Disable SYS_CIRQ
*/
void mt_cirq_disable(void)
{
uint32_t st;
st = mt_cirq_read32(CIRQ_CON);
st &= ~(CIRQ_CON_EN << CIRQ_CON_EN_BITS);
mt_cirq_write32((st & CIRQ_CON_BITS_MASK), CIRQ_CON);
}
/*
* mt_cirq_get_mask: Get the specified SYS_CIRQ mask
* @cirq_num: the SYS_CIRQ number to get
* @return:
* 1: this cirq is masked
* 0: this cirq is umasked
* 2: cirq num is out of range
*/
__attribute__((weak)) unsigned int mt_cirq_get_mask(uint32_t cirq_num)
{
uint32_t st;
unsigned int val;
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return 2;
}
st = mt_cirq_read32((cirq_num / 32U) * 4U + CIRQ_MASK_BASE);
val = (st >> (cirq_num % 32U)) & 1U;
return val;
}
/*
* mt_cirq_mask_all: Mask all interrupts on SYS_CIRQ.
*/
void mt_cirq_mask_all(void)
{
unsigned int i;
for (i = 0U; i < CIRQ_CTRL_REG_NUM; i++) {
mt_cirq_write32(0xFFFFFFFF, CIRQ_MASK_SET_BASE + (i * 4U));
}
/* make sure all cirq setting take effect before doing other things */
dmbsy();
}
/*
* mt_cirq_unmask_all: Unmask all interrupts on SYS_CIRQ.
*/
void mt_cirq_unmask_all(void)
{
unsigned int i;
for (i = 0U; i < CIRQ_CTRL_REG_NUM; i++) {
mt_cirq_write32(0xFFFFFFFF, CIRQ_MASK_CLR_BASE + (i * 4U));
}
/* make sure all cirq setting take effect before doing other things */
dmbsy();
}
/*
* mt_cirq_mask: Mask the specified SYS_CIRQ.
* @cirq_num: the SYS_CIRQ number to mask
* @return:
* 0: mask success
* -1: cirq num is out of range
*/
static int mt_cirq_mask(uint32_t cirq_num)
{
uint32_t bit = 1U << (cirq_num % 32U);
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return -1;
}
mt_cirq_write32(bit, (cirq_num / 32U) * 4U + CIRQ_MASK_SET_BASE);
return 0;
}
/*
* mt_cirq_unmask: Unmask the specified SYS_CIRQ.
* @cirq_num: the SYS_CIRQ number to unmask
* @return:
* 0: umask success
* -1: cirq num is out of range
*/
static int mt_cirq_unmask(uint32_t cirq_num)
{
uint32_t bit = 1U << (cirq_num % 32U);
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return -1;
}
mt_cirq_write32(bit, (cirq_num / 32U) * 4U + CIRQ_MASK_CLR_BASE);
return 0;
}
/*
* mt_cirq_set_sens: Set the sensitivity for the specified SYS_CIRQ number.
* @cirq_num: the SYS_CIRQ number to set
* @sens: sensitivity to set
* @return:
* 0: set sens success
* -1: cirq num is out of range
*/
static int mt_cirq_set_sens(uint32_t cirq_num, uint32_t sens)
{
uint32_t base;
uint32_t bit = 1U << (cirq_num % 32U);
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return -1;
}
if (sens == MT_CIRQ_EDGE_SENSITIVE) {
base = (cirq_num / 32U) * 4U + CIRQ_SENS_CLR_BASE;
} else if (sens == MT_CIRQ_LEVEL_SENSITIVE) {
base = (cirq_num / 32U) * 4U + CIRQ_SENS_SET_BASE;
} else {
ERROR("[CIRQ] set_sens invalid sen value %u\n", sens);
return -1;
}
mt_cirq_write32(bit, base);
return 0;
}
/*
* mt_cirq_get_sens: Get the specified SYS_CIRQ sensitivity
* @cirq_num: the SYS_CIRQ number to get
* @return:
* 1: this cirq is MT_LEVEL_SENSITIVE
* 0: this cirq is MT_EDGE_SENSITIVE
* 2: cirq num is out of range
*/
__attribute__((weak)) unsigned int mt_cirq_get_sens(uint32_t cirq_num)
{
uint32_t st;
unsigned int val;
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return 2;
}
st = mt_cirq_read32((cirq_num / 32U) * 4U + CIRQ_SENS_BASE);
val = (st >> (cirq_num % 32U)) & 1U;
return val;
}
/*
* mt_cirq_set_pol: Set the polarity for the specified SYS_CIRQ number.
* @cirq_num: the SYS_CIRQ number to set
* @pol: polarity to set
* @return:
* 0: set pol success
* -1: cirq num is out of range
*/
static int mt_cirq_set_pol(uint32_t cirq_num, uint32_t pol)
{
uint32_t base;
uint32_t bit = 1U << (cirq_num % 32U);
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return -1;
}
if (pol == MT_CIRQ_POL_NEG) {
base = (cirq_num / 32U) * 4U + CIRQ_POL_CLR_BASE;
} else if (pol == MT_CIRQ_POL_POS) {
base = (cirq_num / 32U) * 4U + CIRQ_POL_SET_BASE;
} else {
ERROR("[CIRQ] set_pol invalid polarity value %u\n", pol);
return -1;
}
mt_cirq_write32(bit, base);
return 0;
}
/*
* mt_cirq_get_pol: Get the specified SYS_CIRQ polarity
* @cirq_num: the SYS_CIRQ number to get
* @return:
* 1: this cirq is MT_CIRQ_POL_POS
* 0: this cirq is MT_CIRQ_POL_NEG
* 2: cirq num is out of range
*/
__attribute__((weak)) unsigned int mt_cirq_get_pol(uint32_t cirq_num)
{
uint32_t st;
unsigned int val;
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return 2;
}
st = mt_cirq_read32((cirq_num / 32U) * 4U + CIRQ_POL_BASE);
val = (st >> (cirq_num % 32U)) & 1U;
return val;
}
/*
* mt_cirq_get_pending: Get the specified SYS_CIRQ pending
* @cirq_num: the SYS_CIRQ number to get
* @return:
* 1: this cirq is pending
* 0: this cirq is not pending
* 2: cirq num is out of range
*/
static unsigned int mt_cirq_get_pending(uint32_t cirq_num)
{
uint32_t st;
unsigned int val;
if (cirq_num >= CIRQ_IRQ_NUM) {
ERROR("[CIRQ] %s: invalid cirq %u\n", __func__, cirq_num);
return 2;
}
st = mt_cirq_read32((cirq_num / 32U) * 4U + CIRQ_STA_BASE);
val = (st >> (cirq_num % 32U)) & 1U;
return val;
}
/*
* mt_cirq_clone_pol: Copy the polarity setting from GIC to SYS_CIRQ
*/
void mt_cirq_clone_pol(void)
{
uint32_t cirq_num;
for (cirq_num = 0U; cirq_num < CIRQ_IRQ_NUM; cirq_num++) {
mt_cirq_set_pol(cirq_num, MT_CIRQ_POL_POS);
}
}
/*
* mt_cirq_clone_sens: Copy the sensitivity setting from GIC to SYS_CIRQ
*/
void mt_cirq_clone_sens(void)
{
uint32_t cirq_num, irq_num;
uint32_t st, val;
for (cirq_num = 0U; cirq_num < CIRQ_IRQ_NUM; cirq_num++) {
irq_num = CIRQ_TO_IRQ_NUM(cirq_num);
if ((cirq_num == 0U) || (irq_num % 16U == 0U)) {
st = mmio_read_32(BASE_GICD_BASE + GICD_ICFGR +
(irq_num / 16U * 4U));
}
val = (st >> ((irq_num % 16U) * 2U)) & 0x2U;
if (val) {
mt_cirq_set_sens(cirq_num, MT_CIRQ_EDGE_SENSITIVE);
} else {
mt_cirq_set_sens(cirq_num, MT_CIRQ_LEVEL_SENSITIVE);
}
}
}
/*
* mt_cirq_clone_mask: Copy the mask setting from GIC to SYS_CIRQ
*/
void mt_cirq_clone_mask(void)
{
uint32_t cirq_num, irq_num;
uint32_t st, val;
for (cirq_num = 0U; cirq_num < CIRQ_IRQ_NUM; cirq_num++) {
irq_num = CIRQ_TO_IRQ_NUM(cirq_num);
if ((cirq_num == 0U) || (irq_num % 32U == 0U)) {
st = mmio_read_32(BASE_GICD_BASE +
GICD_ISENABLER + (irq_num / 32U * 4U));
}
val = (st >> (irq_num % 32)) & 1U;
if (val) {
mt_cirq_unmask(cirq_num);
} else {
mt_cirq_mask(cirq_num);
}
}
}
/*
* mt_cirq_clone_gic: Copy the setting from GIC to SYS_CIRQ
*/
void mt_cirq_clone_gic(void)
{
mt_cirq_clone_sens();
mt_cirq_clone_mask();
}
/*
* mt_cirq_disable: Flush interrupt from SYS_CIRQ to GIC
*/
void mt_cirq_flush(void)
{
unsigned int i;
unsigned char cirq_p_val = 0U;
unsigned char irq_p_val = 0U;
uint32_t irq_p = 0U;
unsigned char pass = 1U;
uint32_t first_cirq_found = 0U;
uint32_t first_flushed_cirq;
uint32_t first_irq_flushedto;
uint32_t last_fluashed_cirq;
uint32_t last_irq_flushedto;
if (cirq_pattern_clone_flush_check_val == 1U) {
if (cirq_pattern_list < CIRQ_IRQ_NUM) {
mt_cirq_unmask(cirq_pattern_list);
mt_cirq_set_sens(cirq_pattern_list,
MT_CIRQ_EDGE_SENSITIVE);
mt_cirq_set_pol(cirq_pattern_list, MT_CIRQ_POL_NEG);
mt_cirq_set_pol(cirq_pattern_list, MT_CIRQ_POL_POS);
mt_cirq_set_pol(cirq_pattern_list, MT_CIRQ_POL_NEG);
} else {
ERROR("[CIRQ] no pattern to test,");
ERROR("input pattern first\n");
}
ERROR("[CIRQ] cirq_pattern %u, cirq_p %u,",
cirq_pattern_list,
mt_cirq_get_pending(cirq_pattern_list));
ERROR("cirq_s %u, cirq_con 0x%x\n",
mt_cirq_get_sens(cirq_pattern_list),
mt_cirq_read32(CIRQ_CON));
}
mt_cirq_unmask_all();
for (i = 0U; i < CIRQ_IRQ_NUM; i++) {
cirq_p_val = mt_cirq_get_pending(i);
if (cirq_p_val) {
mt_irq_set_pending(CIRQ_TO_IRQ_NUM(i));
}
if (cirq_clone_flush_check_val == 1U) {
if (cirq_p_val == 0U) {
continue;
}
irq_p = CIRQ_TO_IRQ_NUM(i);
irq_p_val = mt_irq_get_pending(irq_p);
if (cirq_p_val != irq_p_val) {
ERROR("[CIRQ] CIRQ Flush Failed ");
ERROR("%u(cirq %d)!= %u(gic %d)\n",
cirq_p_val, i, irq_p_val,
CIRQ_TO_IRQ_NUM(i));
pass = 0;
} else {
ERROR("[CIRQ] CIRQ Flush Pass ");
ERROR("%u(cirq %d) = %u(gic %d)\n",
cirq_p_val, i, irq_p_val,
CIRQ_TO_IRQ_NUM(i));
}
if (!first_cirq_found) {
first_flushed_cirq = i;
first_irq_flushedto = irq_p;
first_cirq_found = 1U;
}
last_fluashed_cirq = i;
last_irq_flushedto = irq_p;
}
}
if (cirq_clone_flush_check_val == 1U) {
if (first_cirq_found) {
ERROR("[CIRQ] The first flush : CIRQ%u to IRQ%u\n",
first_flushed_cirq, first_irq_flushedto);
ERROR("[CIRQ] The last flush : CIRQ%u to IRQ%u\n",
last_fluashed_cirq, last_irq_flushedto);
} else {
ERROR("[CIRQ] There are no pending ");
ERROR("interrupt in CIRQ\n");
ERROR("[CIRQ] so no flush operation happened\n");
}
ERROR("[CIRQ] The Flush Max Range : CIRQ");
ERROR("%d to IRQ%d ~ CIRQ%d to IRQ%d\n", 0U,
CIRQ_TO_IRQ_NUM(0U), CIRQ_IRQ_NUM - 1U,
CIRQ_TO_IRQ_NUM(CIRQ_IRQ_NUM - 1U));
ERROR("[CIRQ] Flush Check %s, Confirm:SPI_START_OFFSET:%d\n",
pass == 1 ? "Pass" : "Failed", CIRQ_SPI_START);
}
mt_cirq_mask_all();
mt_cirq_ack_all();
}
void mt_cirq_sw_reset(void)
{
uint32_t st;
st = mt_cirq_read32(CIRQ_CON);
st |= (CIRQ_SW_RESET << CIRQ_CON_SW_RST_BITS);
mt_cirq_write32(st, CIRQ_CON);
}
void set_wakeup_sources(uint32_t *list, uint32_t num_of_events)
{
cirq_all_events.num_of_events = num_of_events;
cirq_all_events.wakeup_events = list;
}

View File

@ -175,3 +175,22 @@ void mt_gic_init(void)
gicv3_rdistif_init(plat_my_core_pos());
gicv3_cpuif_enable(plat_my_core_pos());
}
uint32_t mt_irq_get_pending(uint32_t irq)
{
uint32_t val;
val = mmio_read_32(BASE_GICD_BASE + GICD_ISPENDR +
irq / 32 * 4);
val = (val >> (irq % 32)) & 1U;
return val;
}
void mt_irq_set_pending(uint32_t irq)
{
uint32_t bit = 1U << (irq % 32);
mmio_write_32(BASE_GICD_BASE + GICD_ISPENDR +
irq / 32 * 4, bit);
}

View File

@ -36,6 +36,7 @@ BL31_SOURCES += common/desc_image_load.c \
${MTK_PLAT_SOC}/plat_pm.c \
${MTK_PLAT_SOC}/plat_topology.c \
${MTK_PLAT_SOC}/plat_mt_gic.c \
${MTK_PLAT_SOC}/plat_mt_cirq.c \
${MTK_PLAT_SOC}/drivers/gpio/mtgpio.c