stm32mp1: SCMI clock and reset service in SP_MIN

This change implements platform services for stm32mp1 to expose clock
and reset controllers over SCMI clock and reset domain protocols
in sp_min firmware.

Requests execution use a fastcall SMC context using a SiP function ID.
The setup allows the create SCMI channels by assigning a specific
SiP SMC function ID for each channel/agent identifier defined. In this
change, stm32mp1 exposes a single channel and hence expects single
agent at a time.

The input payload in copied in secure memory before the message
in passed through the SCMI server drivers. BL32/sp_min is invoked
for a single SCMI message processing and always returns with a
synchronous response message passed back to the caller agent.

This change fixes and updates STM32_COMMON_SIP_NUM_CALLS that was
previously wrongly set 4 whereas only 1 SiP SMC function ID was to
be counted. STM32_COMMON_SIP_NUM_CALLS is now set to 3 since the
2 added SiP SMC function IDs for SCMI services.

Change-Id: Icb428775856b9aec00538172aea4cf11e609b033
Signed-off-by: Etienne Carriere <etienne.carriere@st.com>
This commit is contained in:
Etienne Carriere 2020-07-16 17:36:18 +02:00
parent 08826b6cf8
commit fdaaaeb431
8 changed files with 520 additions and 2 deletions

View File

@ -196,4 +196,11 @@
******************************************************************************/
#define PLAT_PCPU_DATA_SIZE 2
/*******************************************************************************
* Number of parallel entry slots in SMT SCMI server entry context. For this
* platform, SCMI server is reached through SMC only, hence the number of
* entry slots.
******************************************************************************/
#define PLAT_SMT_ENTRY_COUNT PLATFORM_CORE_COUNT
#endif /* PLATFORM_DEF_H */

View File

@ -22,4 +22,6 @@ void stm32mp1_syscfg_enable_io_compensation(void);
void stm32mp1_syscfg_disable_io_compensation(void);
uint32_t stm32mp_get_ddr_ns_size(void);
void stm32mp1_init_scmi_server(void);
#endif /* STM32MP1_PRIVATE_H */

View File

@ -29,6 +29,16 @@
*/
#define STM32_SMC_BSEC 0x82001003
/*
* STM32_SIP_SMC_SCMI_AGENT0
* STM32_SIP_SMC_SCMI_AGENT1
* Process SCMI message pending in SCMI shared memory buffer.
*
* Argument a0: (input) SMCC ID
*/
#define STM32_SIP_SMC_SCMI_AGENT0 0x82002000
#define STM32_SIP_SMC_SCMI_AGENT1 0x82002001
/* SMC function IDs for SiP Service queries */
#define STM32_SIP_SVC_CALL_COUNT 0x8200ff00
#define STM32_SIP_SVC_UID 0x8200ff01
@ -40,7 +50,7 @@
#define STM32_SIP_SVC_VERSION_MINOR 0x1
/* Number of STM32 SiP Calls implemented */
#define STM32_COMMON_SIP_NUM_CALLS 4
#define STM32_COMMON_SIP_NUM_CALLS 3
/* Service for BSEC */
#define STM32_SMC_READ_SHADOW 0x01

View File

@ -9,6 +9,7 @@
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <drivers/st/scmi-msg.h>
#include <lib/psci/psci.h>
#include <tools_share/uuid.h>
@ -65,6 +66,13 @@ static uintptr_t stm32mp1_svc_smc_handler(uint32_t smc_fid, u_register_t x1,
ret2_enabled = true;
break;
case STM32_SIP_SMC_SCMI_AGENT0:
scmi_smt_fastcall_smc_entry(0);
break;
case STM32_SIP_SMC_SCMI_AGENT1:
scmi_smt_fastcall_smc_entry(1);
break;
default:
WARN("Unimplemented STM32MP1 Service Call: 0x%x\n", smc_fid);
ret1 = SMC_UNK;

View File

@ -25,9 +25,17 @@ BL32_SOURCES += drivers/arm/gic/common/gic_common.c \
# Generic PSCI
BL32_SOURCES += plat/common/plat_psci_common.c
# SCMI server drivers
BL32_SOURCES += drivers/st/scmi-msg/base.c \
drivers/st/scmi-msg/clock.c \
drivers/st/scmi-msg/entry.c \
drivers/st/scmi-msg/reset_domain.c \
drivers/st/scmi-msg/smt.c
# stm32mp1 specific services
BL32_SOURCES += plat/st/stm32mp1/services/bsec_svc.c \
plat/st/stm32mp1/services/stm32mp1_svc_setup.c
plat/st/stm32mp1/services/stm32mp1_svc_setup.c \
plat/st/stm32mp1/stm32mp1_scmi.c
# Arm Archtecture services
BL32_SOURCES += services/arm_arch_svc/arm_arch_svc_setup.c

View File

@ -197,6 +197,8 @@ void sp_min_platform_setup(void)
}
stm32mp_lock_periph_registering();
stm32mp1_init_scmi_server();
}
void sp_min_plat_arch_setup(void)

View File

@ -62,6 +62,9 @@
STM32MP_SYSRAM_SIZE - \
STM32MP_NS_SYSRAM_SIZE)
#define STM32MP_SCMI_NS_SHM_BASE STM32MP_NS_SYSRAM_BASE
#define STM32MP_SCMI_NS_SHM_SIZE STM32MP_NS_SYSRAM_SIZE
#define STM32MP_SEC_SYSRAM_BASE STM32MP_SYSRAM_BASE
#define STM32MP_SEC_SYSRAM_SIZE (STM32MP_SYSRAM_SIZE - \
STM32MP_NS_SYSRAM_SIZE)

View File

@ -0,0 +1,478 @@
/*
* Copyright (c) 2019-2020, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdint.h>
#include <platform_def.h>
#include <drivers/st/scmi-msg.h>
#include <drivers/st/scmi.h>
#include <drivers/st/stm32mp1_clk.h>
#include <drivers/st/stm32mp_reset.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <dt-bindings/reset/stm32mp1-resets.h>
#define TIMEOUT_US_1MS 1000U
#define SCMI_CLOCK_NAME_SIZE 16U
#define SCMI_RSTD_NAME_SIZE 16U
/*
* struct stm32_scmi_clk - Data for the exposed clock
* @clock_id: Clock identifier in RCC clock driver
* @name: Clock string ID exposed to agent
* @enabled: State of the SCMI clock
*/
struct stm32_scmi_clk {
unsigned long clock_id;
const char *name;
bool enabled;
};
/*
* struct stm32_scmi_rstd - Data for the exposed reset controller
* @reset_id: Reset identifier in RCC reset driver
* @name: Reset string ID exposed to agent
*/
struct stm32_scmi_rstd {
unsigned long reset_id;
const char *name;
};
/* Locate all non-secure SMT message buffers in last page of SYSRAM */
#define SMT_BUFFER_BASE STM32MP_SCMI_NS_SHM_BASE
#define SMT_BUFFER0_BASE SMT_BUFFER_BASE
#define SMT_BUFFER1_BASE (SMT_BUFFER_BASE + 0x200)
CASSERT((STM32MP_SCMI_NS_SHM_BASE + STM32MP_SCMI_NS_SHM_SIZE) >=
(SMT_BUFFER1_BASE + SMT_BUF_SLOT_SIZE),
assert_scmi_non_secure_shm_fits_scmi_overall_buffer_size);
static struct scmi_msg_channel scmi_channel[] = {
[0] = {
.shm_addr = SMT_BUFFER0_BASE,
.shm_size = SMT_BUF_SLOT_SIZE,
},
[1] = {
.shm_addr = SMT_BUFFER1_BASE,
.shm_size = SMT_BUF_SLOT_SIZE,
},
};
struct scmi_msg_channel *plat_scmi_get_channel(unsigned int agent_id)
{
assert(agent_id < ARRAY_SIZE(scmi_channel));
return &scmi_channel[agent_id];
}
#define CLOCK_CELL(_scmi_id, _id, _name, _init_enabled) \
[_scmi_id] = { \
.clock_id = _id, \
.name = _name, \
.enabled = _init_enabled, \
}
static struct stm32_scmi_clk stm32_scmi0_clock[] = {
CLOCK_CELL(CK_SCMI0_HSE, CK_HSE, "ck_hse", true),
CLOCK_CELL(CK_SCMI0_HSI, CK_HSI, "ck_hsi", true),
CLOCK_CELL(CK_SCMI0_CSI, CK_CSI, "ck_csi", true),
CLOCK_CELL(CK_SCMI0_LSE, CK_LSE, "ck_lse", true),
CLOCK_CELL(CK_SCMI0_LSI, CK_LSI, "ck_lsi", true),
CLOCK_CELL(CK_SCMI0_PLL2_Q, PLL2_Q, "pll2_q", true),
CLOCK_CELL(CK_SCMI0_PLL2_R, PLL2_R, "pll2_r", true),
CLOCK_CELL(CK_SCMI0_MPU, CK_MPU, "ck_mpu", true),
CLOCK_CELL(CK_SCMI0_AXI, CK_AXI, "ck_axi", true),
CLOCK_CELL(CK_SCMI0_BSEC, BSEC, "bsec", true),
CLOCK_CELL(CK_SCMI0_CRYP1, CRYP1, "cryp1", false),
CLOCK_CELL(CK_SCMI0_GPIOZ, GPIOZ, "gpioz", false),
CLOCK_CELL(CK_SCMI0_HASH1, HASH1, "hash1", false),
CLOCK_CELL(CK_SCMI0_I2C4, I2C4_K, "i2c4_k", false),
CLOCK_CELL(CK_SCMI0_I2C6, I2C6_K, "i2c6_k", false),
CLOCK_CELL(CK_SCMI0_IWDG1, IWDG1, "iwdg1", false),
CLOCK_CELL(CK_SCMI0_RNG1, RNG1_K, "rng1_k", true),
CLOCK_CELL(CK_SCMI0_RTC, RTC, "ck_rtc", true),
CLOCK_CELL(CK_SCMI0_RTCAPB, RTCAPB, "rtcapb", true),
CLOCK_CELL(CK_SCMI0_SPI6, SPI6_K, "spi6_k", false),
CLOCK_CELL(CK_SCMI0_USART1, USART1_K, "usart1_k", false),
};
static struct stm32_scmi_clk stm32_scmi1_clock[] = {
CLOCK_CELL(CK_SCMI1_PLL3_Q, PLL3_Q, "pll3_q", true),
CLOCK_CELL(CK_SCMI1_PLL3_R, PLL3_R, "pll3_r", true),
CLOCK_CELL(CK_SCMI1_MCU, CK_MCU, "ck_mcu", false),
};
#define RESET_CELL(_scmi_id, _id, _name) \
[_scmi_id] = { \
.reset_id = _id, \
.name = _name, \
}
static struct stm32_scmi_rstd stm32_scmi0_reset_domain[] = {
RESET_CELL(RST_SCMI0_SPI6, SPI6_R, "spi6"),
RESET_CELL(RST_SCMI0_I2C4, I2C4_R, "i2c4"),
RESET_CELL(RST_SCMI0_I2C6, I2C6_R, "i2c6"),
RESET_CELL(RST_SCMI0_USART1, USART1_R, "usart1"),
RESET_CELL(RST_SCMI0_STGEN, STGEN_R, "stgen"),
RESET_CELL(RST_SCMI0_GPIOZ, GPIOZ_R, "gpioz"),
RESET_CELL(RST_SCMI0_CRYP1, CRYP1_R, "cryp1"),
RESET_CELL(RST_SCMI0_HASH1, HASH1_R, "hash1"),
RESET_CELL(RST_SCMI0_RNG1, RNG1_R, "rng1"),
RESET_CELL(RST_SCMI0_MDMA, MDMA_R, "mdma"),
RESET_CELL(RST_SCMI0_MCU, MCU_R, "mcu"),
};
struct scmi_agent_resources {
struct stm32_scmi_clk *clock;
size_t clock_count;
struct stm32_scmi_rstd *rstd;
size_t rstd_count;
};
static const struct scmi_agent_resources agent_resources[] = {
[0] = {
.clock = stm32_scmi0_clock,
.clock_count = ARRAY_SIZE(stm32_scmi0_clock),
.rstd = stm32_scmi0_reset_domain,
.rstd_count = ARRAY_SIZE(stm32_scmi0_reset_domain),
},
[1] = {
.clock = stm32_scmi1_clock,
.clock_count = ARRAY_SIZE(stm32_scmi1_clock),
},
};
static const struct scmi_agent_resources *find_resource(unsigned int agent_id)
{
assert(agent_id < ARRAY_SIZE(agent_resources));
return &agent_resources[agent_id];
}
#if ENABLE_ASSERTIONS
static size_t plat_scmi_protocol_count_paranoid(void)
{
unsigned int n = 0U;
unsigned int count = 0U;
for (n = 0U; n < ARRAY_SIZE(agent_resources); n++) {
if (agent_resources[n].clock_count) {
count++;
break;
}
}
for (n = 0U; n < ARRAY_SIZE(agent_resources); n++) {
if (agent_resources[n].rstd_count) {
count++;
break;
}
}
return count;
}
#endif
static const char vendor[] = "ST";
static const char sub_vendor[] = "";
const char *plat_scmi_vendor_name(void)
{
return vendor;
}
const char *plat_scmi_sub_vendor_name(void)
{
return sub_vendor;
}
/* Currently supporting Clocks and Reset Domains */
static const uint8_t plat_protocol_list[] = {
SCMI_PROTOCOL_ID_CLOCK,
SCMI_PROTOCOL_ID_RESET_DOMAIN,
0U /* Null termination */
};
size_t plat_scmi_protocol_count(void)
{
const size_t count = ARRAY_SIZE(plat_protocol_list) - 1U;
assert(count == plat_scmi_protocol_count_paranoid());
return count;
}
const uint8_t *plat_scmi_protocol_list(unsigned int agent_id __unused)
{
assert(plat_scmi_protocol_count_paranoid() ==
(ARRAY_SIZE(plat_protocol_list) - 1U));
return plat_protocol_list;
}
/*
* Platform SCMI clocks
*/
static struct stm32_scmi_clk *find_clock(unsigned int agent_id,
unsigned int scmi_id)
{
const struct scmi_agent_resources *resource = find_resource(agent_id);
size_t n = 0U;
if (resource != NULL) {
for (n = 0U; n < resource->clock_count; n++) {
if (n == scmi_id) {
return &resource->clock[n];
}
}
}
return NULL;
}
size_t plat_scmi_clock_count(unsigned int agent_id)
{
const struct scmi_agent_resources *resource = find_resource(agent_id);
if (resource == NULL) {
return 0U;
}
return resource->clock_count;
}
const char *plat_scmi_clock_get_name(unsigned int agent_id,
unsigned int scmi_id)
{
struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id);
if ((clock == NULL) ||
!stm32mp_nsec_can_access_clock(clock->clock_id)) {
return NULL;
}
return clock->name;
}
int32_t plat_scmi_clock_rates_array(unsigned int agent_id, unsigned int scmi_id,
unsigned long *array, size_t *nb_elts)
{
struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id);
if (clock == NULL) {
return SCMI_NOT_FOUND;
}
if (!stm32mp_nsec_can_access_clock(clock->clock_id)) {
return SCMI_DENIED;
}
if (array == NULL) {
*nb_elts = 1U;
} else if (*nb_elts == 1U) {
*array = stm32mp_clk_get_rate(clock->clock_id);
} else {
return SCMI_GENERIC_ERROR;
}
return SCMI_SUCCESS;
}
unsigned long plat_scmi_clock_get_rate(unsigned int agent_id,
unsigned int scmi_id)
{
struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id);
if ((clock == NULL) ||
!stm32mp_nsec_can_access_clock(clock->clock_id)) {
return 0U;
}
return stm32mp_clk_get_rate(clock->clock_id);
}
int32_t plat_scmi_clock_get_state(unsigned int agent_id, unsigned int scmi_id)
{
struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id);
if ((clock == NULL) ||
!stm32mp_nsec_can_access_clock(clock->clock_id)) {
return 0U;
}
return (int32_t)clock->enabled;
}
int32_t plat_scmi_clock_set_state(unsigned int agent_id, unsigned int scmi_id,
bool enable_not_disable)
{
struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id);
if (clock == NULL) {
return SCMI_NOT_FOUND;
}
if (!stm32mp_nsec_can_access_clock(clock->clock_id)) {
return SCMI_DENIED;
}
if (enable_not_disable) {
if (!clock->enabled) {
VERBOSE("SCMI clock %u enable\n", scmi_id);
stm32mp_clk_enable(clock->clock_id);
clock->enabled = true;
}
} else {
if (clock->enabled) {
VERBOSE("SCMI clock %u disable\n", scmi_id);
stm32mp_clk_disable(clock->clock_id);
clock->enabled = false;
}
}
return SCMI_SUCCESS;
}
/*
* Platform SCMI reset domains
*/
static struct stm32_scmi_rstd *find_rstd(unsigned int agent_id,
unsigned int scmi_id)
{
const struct scmi_agent_resources *resource = find_resource(agent_id);
size_t n;
if (resource != NULL) {
for (n = 0U; n < resource->rstd_count; n++) {
if (n == scmi_id) {
return &resource->rstd[n];
}
}
}
return NULL;
}
const char *plat_scmi_rstd_get_name(unsigned int agent_id, unsigned int scmi_id)
{
const struct stm32_scmi_rstd *rstd = find_rstd(agent_id, scmi_id);
if (rstd == NULL) {
return NULL;
}
return rstd->name;
}
size_t plat_scmi_rstd_count(unsigned int agent_id)
{
const struct scmi_agent_resources *resource = find_resource(agent_id);
if (resource == NULL) {
return 0U;
}
return resource->rstd_count;
}
int32_t plat_scmi_rstd_autonomous(unsigned int agent_id, unsigned int scmi_id,
uint32_t state)
{
const struct stm32_scmi_rstd *rstd = find_rstd(agent_id, scmi_id);
if (rstd == NULL) {
return SCMI_NOT_FOUND;
}
if (!stm32mp_nsec_can_access_reset(rstd->reset_id)) {
return SCMI_DENIED;
}
/* Supports only reset with context loss */
if (state != 0U) {
return SCMI_NOT_SUPPORTED;
}
VERBOSE("SCMI reset %lu cycle\n", rstd->reset_id);
if (stm32mp_reset_assert(rstd->reset_id, TIMEOUT_US_1MS)) {
return SCMI_HARDWARE_ERROR;
}
if (stm32mp_reset_deassert(rstd->reset_id, TIMEOUT_US_1MS)) {
return SCMI_HARDWARE_ERROR;
}
return SCMI_SUCCESS;
}
int32_t plat_scmi_rstd_set_state(unsigned int agent_id, unsigned int scmi_id,
bool assert_not_deassert)
{
const struct stm32_scmi_rstd *rstd = find_rstd(agent_id, scmi_id);
if (rstd == NULL) {
return SCMI_NOT_FOUND;
}
if (!stm32mp_nsec_can_access_reset(rstd->reset_id)) {
return SCMI_DENIED;
}
if (assert_not_deassert) {
VERBOSE("SCMI reset %lu set\n", rstd->reset_id);
stm32mp_reset_set(rstd->reset_id);
} else {
VERBOSE("SCMI reset %lu release\n", rstd->reset_id);
stm32mp_reset_release(rstd->reset_id);
}
return SCMI_SUCCESS;
}
/*
* Initialize platform SCMI resources
*/
void stm32mp1_init_scmi_server(void)
{
size_t i;
for (i = 0U; i < ARRAY_SIZE(scmi_channel); i++) {
scmi_smt_init_agent_channel(&scmi_channel[i]);
}
for (i = 0U; i < ARRAY_SIZE(agent_resources); i++) {
const struct scmi_agent_resources *res = &agent_resources[i];
size_t j;
for (j = 0U; j < res->clock_count; j++) {
struct stm32_scmi_clk *clk = &res->clock[j];
if ((clk->name == NULL) ||
(strlen(clk->name) >= SCMI_CLOCK_NAME_SIZE)) {
ERROR("Invalid SCMI clock name\n");
panic();
}
/* Sync SCMI clocks with their targeted initial state */
if (clk->enabled &&
stm32mp_nsec_can_access_clock(clk->clock_id)) {
stm32mp_clk_enable(clk->clock_id);
}
}
for (j = 0U; j < res->rstd_count; j++) {
struct stm32_scmi_rstd *rstd = &res->rstd[j];
if ((rstd->name == NULL) ||
(strlen(rstd->name) >= SCMI_RSTD_NAME_SIZE)) {
ERROR("Invalid SCMI reset domain name\n");
panic();
}
}
}
}