Commit Graph

4 Commits

Author SHA1 Message Date
Sandrine Bailleux b793e43166 fvp: Provide per-EL MMU setup functions
Instead of having a single version of the MMU setup functions for all
bootloader images that can execute either in EL3 or in EL1, provide
separate functions for EL1 and EL3. Each bootloader image can then
call the appropriate version of these functions. The aim is to reduce
the amount of code compiled in each BL image by embedding only what's
needed (e.g. BL1 to embed only EL3 variants).

Change-Id: Ib86831d5450cf778ae78c9c1f7553fe91274c2fa
2014-05-09 14:56:10 +01:00
Dan Handley 97043ac98e Reduce deep nesting of header files
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.

Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.

Fixes ARM-software/tf-issues#31

Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
2014-05-06 13:57:48 +01:00
Andrew Thoelke 0a30cf54af Place assembler functions in separate sections
This extends the --gc-sections behaviour to the many assembler
support functions in the firmware images by placing each function
into its own code section. This is achieved by creating a 'func'
macro used to declare each function label.

Fixes ARM-software/tf-issues#80

Change-Id: I301937b630add292d2dec6d2561a7fcfa6fec690
2014-03-26 21:54:37 +00:00
Achin Gupta 7c88f3f633 Add Test Secure Payload (BL3-2) image
This patch adds a simple TSP as the BL3-2 image. The secure payload
executes in S-EL1. It paves the way for the addition of the TSP
dispatcher runtime service to BL3-1. The TSP and the dispatcher service
will serve as an example of the runtime firmware's ability to toggle
execution between the non-secure and secure states in response to SMC
request from the non-secure state.  The TSP will be replaced by a
Trusted OS in a real system.

The TSP also exports a set of handlers which should be called in
response to a PSCI power management event e.g a cpu being suspended or
turned off. For now it runs out of Secure DRAM on the ARM FVP port and
will be moved to Secure SRAM later. The default translation table setup
code assumes that the caller is executing out of secure SRAM. Hence the
TSP exports its own translation table setup function.

The TSP only services Fast SMCs, is non-reentrant and non-interruptible.
It does arithmetic operations on two sets of four operands, one set
supplied by the non-secure client, and the other supplied by the TSP
dispatcher in EL3. It returns the result according to the Secure Monitor
Calling convention standard.

This TSP has two functional entry points:

- An initial, one-time entry point through which the TSP is initialized
  and prepares for receiving further requests from secure
  monitor/dispatcher

- A fast SMC service entry point through which the TSP dispatcher
  requests secure services on behalf of the non-secure client

Change-Id: I24377df53399307e2560a025eb2c82ce98ab3931
Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2014-02-20 19:06:34 +00:00