Commit Graph

6 Commits

Author SHA1 Message Date
Antonio Nino Diaz 2644103063 Invalidate TLB entries during warm boot
During the warm boot sequence:

1. The MMU is enabled with the data cache disabled. The MMU table walker
   is set up to access the translation tables as in cacheable memory,
   but its accesses are non-cacheable because SCTLR_EL3.C controls them
   as well.
2. The interconnect is set up and the CPU enters coherency with the
   rest of the system.
3. The data cache is enabled.

If the support for dynamic translation tables is enabled and another CPU
makes changes to a region, the changes may only be present in the data
cache, not in RAM. The CPU that is booting isn't in coherency with the
rest of the system, so the table walker of that CPU isn't either. This
means that it may read old entries from RAM and it may have invalid TLB
entries corresponding to the dynamic mappings.

This is not a problem for the boot code because the mapping is 1:1 and
the regions are static. However, the code that runs after the boot
sequence may need to access the dynamically mapped regions.

This patch invalidates all TLBs during warm boot when the dynamic
translation tables support is enabled to prevent this problem.

Change-Id: I80264802dc0aa1cb3edd77d0b66b91db6961af3d
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2018-02-27 17:00:41 +00:00
dp-arm 82cb2c1ad9 Use SPDX license identifiers
To make software license auditing simpler, use SPDX[0] license
identifiers instead of duplicating the license text in every file.

NOTE: Files that have been imported by FreeBSD have not been modified.

[0]: https://spdx.org/

Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2017-05-03 09:39:28 +01:00
Jeenu Viswambharan 5dd9dbb5bf Add provision to extend CPU operations at more levels
Various CPU drivers in ARM Trusted Firmware register functions to handle
power-down operations. At present, separate functions are registered to
power down individual cores and clusters.

This scheme operates on the basis of core and cluster, and doesn't cater
for extending the hierarchy for power-down operations. For example,
future CPUs might support multiple threads which might need powering
down individually.

This patch therefore reworks the CPU operations framework to allow for
registering power down handlers on specific level basis. Henceforth:

  - Generic code invokes CPU power down operations by the level
    required.

  - CPU drivers explicitly mention CPU_NO_RESET_FUNC when the CPU has no
    reset function.

  - CPU drivers register power down handlers as a list: a mandatory
    handler for level 0, and optional handlers for higher levels.

All existing CPU drivers are adapted to the new CPU operations framework
without needing any functional changes within.

Also update firmware design guide.

Change-Id: I1826842d37a9e60a9e85fdcee7b4b8f6bc1ad043
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2016-12-15 15:41:40 +00:00
Jeenu Viswambharan a806dad58c Define and use no_ret macro where no return is expected
There are many instances in ARM Trusted Firmware where control is
transferred to functions from which return isn't expected. Such jumps
are made using 'bl' instruction to provide the callee with the location
from which it was jumped to. Additionally, debuggers infer the caller by
examining where 'lr' register points to. If a 'bl' of the nature
described above falls at the end of an assembly function, 'lr' will be
left pointing to a location outside of the function range. This misleads
the debugger back trace.

This patch defines a 'no_ret' macro to be used when jumping to functions
from which return isn't expected. The macro ensures to use 'bl'
instruction for the jump, and also, for debug builds, places a 'nop'
instruction immediately thereafter (unless instructed otherwise) so as
to leave 'lr' pointing within the function range.

Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0
Co-authored-by: Douglas Raillard <douglas.raillard@arm.com>
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2016-12-05 14:55:35 +00:00
Soby Mathew cf0b1492ed Introduce PSCI Library Interface
This patch introduces the PSCI Library interface. The major changes
introduced are as follows:

* Earlier BL31 was responsible for Architectural initialization during cold
boot via bl31_arch_setup() whereas PSCI was responsible for the same during
warm boot. This functionality is now consolidated by the PSCI library
and it does Architectural initialization via psci_arch_setup() during both
cold and warm boots.

* Earlier the warm boot entry point was always `psci_entrypoint()`. This was
not flexible enough as a library interface. Now PSCI expects the runtime
firmware to provide the entry point via `psci_setup()`. A new function
`bl31_warm_entrypoint` is introduced in BL31 and the previous
`psci_entrypoint()` is deprecated.

* The `smc_helpers.h` is reorganized to separate the SMC Calling Convention
defines from the Trusted Firmware SMC helpers. The former is now in a new
header file `smcc.h` and the SMC helpers are moved to Architecture specific
header.

* The CPU context is used by PSCI for context initialization and
restoration after power down (PSCI Context). It is also used by BL31 for SMC
handling and context management during Normal-Secure world switch (SMC
Context). The `psci_smc_handler()` interface is redefined to not use SMC
helper macros thus enabling to decouple the PSCI context from EL3 runtime
firmware SMC context. This enables PSCI to be integrated with other runtime
firmware using a different SMC context.

NOTE: With this patch the architectural setup done in `bl31_arch_setup()`
is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be
invoked prior to architectural setup. It is highly unlikely that the platform
setup will depend on architectural setup and cause any failure. Please be
be aware of this change in sequence.

Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
2016-07-19 10:19:01 +01:00
Soby Mathew 532ed61838 Introduce `el3_runtime` and `PSCI` libraries
This patch moves the PSCI services and BL31 frameworks like context
management and per-cpu data into new library components `PSCI` and
`el3_runtime` respectively. This enables PSCI to be built independently from
BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
PSCI library sources and gets included by `bl31.mk`. Other changes which
are done as part of this patch are:

* The runtime services framework is now moved to the `common/` folder to
  enable reuse.
* The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
  specific folder.
* The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
  to `plat/common` folder. The original file location now has a stub which
  just includes the file from new location to maintain platform compatibility.

Most of the changes wouldn't affect platform builds as they just involve
changes to the generic bl1.mk and bl31.mk makefiles.

NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.

Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
2016-07-18 17:52:15 +01:00