/* * Copyright (c) 2020-2021, Renesas Electronics Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "avs_driver.h" #include "board.h" #include "boot_init_dram.h" #include "cpg_registers.h" #include "emmc_def.h" #include "emmc_hal.h" #include "emmc_std.h" #include "io_common.h" #include "io_rcar.h" #include "qos_init.h" #include "rcar_def.h" #include "rcar_private.h" #include "rcar_version.h" #include "rom_api.h" #define MAX_DRAM_CHANNELS 4 /* * DDR ch0 has a shadow area mapped in 32bit address space. * Physical address 0x4_0000_0000 - 0x4_7fff_ffff in 64bit space * is mapped to 0x4000_0000 - 0xbfff_ffff in 32bit space. */ #define MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE 0x80000000ULL #if RCAR_BL2_DCACHE == 1 /* * Following symbols are only used during plat_arch_setup() only * when RCAR_BL2_DCACHE is enabled. */ static const uint64_t BL2_RO_BASE = BL_CODE_BASE; static const uint64_t BL2_RO_LIMIT = BL_CODE_END; #if USE_COHERENT_MEM static const uint64_t BL2_COHERENT_RAM_BASE = BL_COHERENT_RAM_BASE; static const uint64_t BL2_COHERENT_RAM_LIMIT = BL_COHERENT_RAM_END; #endif /* USE_COHERENT_MEM */ #endif /* RCAR_BL2_DCACHE */ extern void plat_rcar_gic_driver_init(void); extern void plat_rcar_gic_init(void); extern void bl2_enter_bl31(const struct entry_point_info *bl_ep_info); extern void bl2_system_cpg_init(void); extern void bl2_secure_setting(void); extern void bl2_cpg_init(void); extern void rcar_io_emmc_setup(void); extern void rcar_io_setup(void); extern void rcar_swdt_release(void); extern void rcar_swdt_init(void); extern void rcar_rpc_init(void); extern void rcar_dma_init(void); extern void rzg_pfc_init(void); static void bl2_init_generic_timer(void); /* RZ/G2 product check */ #if RCAR_LSI == RZ_G2M #define TARGET_PRODUCT PRR_PRODUCT_M3 #define TARGET_NAME "RZ/G2M" #elif RCAR_LSI == RZ_G2H #define TARGET_PRODUCT PRR_PRODUCT_H3 #define TARGET_NAME "RZ/G2H" #elif RCAR_LSI == RZ_G2N #define TARGET_PRODUCT PRR_PRODUCT_M3N #define TARGET_NAME "RZ/G2N" #elif RCAR_LSI == RZ_G2E #define TARGET_PRODUCT PRR_PRODUCT_E3 #define TARGET_NAME "RZ/G2E" #elif RCAR_LSI == RCAR_AUTO #define TARGET_NAME "RZ/G2M" #endif /* RCAR_LSI == RZ_G2M */ #if (RCAR_LSI == RZ_G2E) #define GPIO_INDT (GPIO_INDT6) #define GPIO_BKUP_TRG_SHIFT ((uint32_t)1U << 13U) #else #define GPIO_INDT (GPIO_INDT1) #define GPIO_BKUP_TRG_SHIFT (1U << 8U) #endif /* RCAR_LSI == RZ_G2E */ CASSERT((PARAMS_BASE + sizeof(bl2_to_bl31_params_mem_t) + 0x100) < (RCAR_SHARED_MEM_BASE + RCAR_SHARED_MEM_SIZE), assert_bl31_params_do_not_fit_in_shared_memory); static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE); /* FDT with DRAM configuration */ uint64_t fdt_blob[PAGE_SIZE_4KB / sizeof(uint64_t)]; static void *fdt = (void *)fdt_blob; static void unsigned_num_print(uint64_t unum, unsigned int radix, char *string) { /* Just need enough space to store 64 bit decimal integer */ char num_buf[20]; int i = 0; unsigned int rem; do { rem = unum % radix; if (rem < 0xaU) { num_buf[i] = '0' + rem; } else { num_buf[i] = 'a' + (rem - 0xaU); } i++; unum /= radix; } while (unum > 0U); while (--i >= 0) { *string++ = num_buf[i]; } *string = 0; } #if RCAR_LOSSY_ENABLE == 1 typedef struct bl2_lossy_info { uint32_t magic; uint32_t a0; uint32_t b0; } bl2_lossy_info_t; static void bl2_lossy_gen_fdt(uint32_t no, uint64_t start_addr, uint64_t end_addr, uint32_t format, uint32_t enable, int fcnlnode) { const uint64_t fcnlsize = cpu_to_fdt64(end_addr - start_addr); char nodename[40] = { 0 }; int ret, node; /* Ignore undefined addresses */ if (start_addr == 0UL && end_addr == 0UL) { return; } snprintf(nodename, sizeof(nodename), "lossy-decompression@"); unsigned_num_print(start_addr, 16, nodename + strlen(nodename)); node = ret = fdt_add_subnode(fdt, fcnlnode, nodename); if (ret < 0) { NOTICE("BL2: Cannot create FCNL node (ret=%i)\n", ret); panic(); } ret = fdt_setprop_string(fdt, node, "compatible", "renesas,lossy-decompression"); if (ret < 0) { NOTICE("BL2: Cannot add FCNL compat string %s (ret=%i)\n", "renesas,lossy-decompression", ret); panic(); } ret = fdt_appendprop_string(fdt, node, "compatible", "shared-dma-pool"); if (ret < 0) { NOTICE("BL2: Cannot append FCNL compat string %s (ret=%i)\n", "shared-dma-pool", ret); panic(); } ret = fdt_setprop_u64(fdt, node, "reg", start_addr); if (ret < 0) { NOTICE("BL2: Cannot add FCNL reg prop (ret=%i)\n", ret); panic(); } ret = fdt_appendprop(fdt, node, "reg", &fcnlsize, sizeof(fcnlsize)); if (ret < 0) { NOTICE("BL2: Cannot append FCNL reg size prop (ret=%i)\n", ret); panic(); } ret = fdt_setprop(fdt, node, "no-map", NULL, 0); if (ret < 0) { NOTICE("BL2: Cannot add FCNL no-map prop (ret=%i)\n", ret); panic(); } ret = fdt_setprop_u32(fdt, node, "renesas,formats", format); if (ret < 0) { NOTICE("BL2: Cannot add FCNL formats prop (ret=%i)\n", ret); panic(); } } static void bl2_lossy_setting(uint32_t no, uint64_t start_addr, uint64_t end_addr, uint32_t format, uint32_t enable, int fcnlnode) { bl2_lossy_info_t info; uint32_t reg; bl2_lossy_gen_fdt(no, start_addr, end_addr, format, enable, fcnlnode); reg = format | (start_addr >> 20); mmio_write_32(AXI_DCMPAREACRA0 + 0x8U * no, reg); mmio_write_32(AXI_DCMPAREACRB0 + 0x8U * no, end_addr >> 20); mmio_write_32(AXI_DCMPAREACRA0 + 0x8U * no, reg | enable); info.magic = 0x12345678U; info.a0 = mmio_read_32(AXI_DCMPAREACRA0 + 0x8U * no); info.b0 = mmio_read_32(AXI_DCMPAREACRB0 + 0x8U * no); mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no, info.magic); mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x4U, info.a0); mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x8U, info.b0); NOTICE(" Entry %d: DCMPAREACRAx:0x%x DCMPAREACRBx:0x%x\n", no, mmio_read_32(AXI_DCMPAREACRA0 + 0x8U * no), mmio_read_32(AXI_DCMPAREACRB0 + 0x8U * no)); } #endif /* RCAR_LOSSY_ENABLE == 1 */ void bl2_plat_flush_bl31_params(void) { uint32_t product_cut, product, cut; uint32_t boot_dev, boot_cpu; uint32_t reg; reg = mmio_read_32(RCAR_MODEMR); boot_dev = reg & MODEMR_BOOT_DEV_MASK; if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 || boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) { emmc_terminate(); } if ((reg & MODEMR_BOOT_CPU_MASK) != MODEMR_BOOT_CPU_CR7) { bl2_secure_setting(); } reg = mmio_read_32(RCAR_PRR); product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK); product = reg & PRR_PRODUCT_MASK; cut = reg & PRR_CUT_MASK; if (!((product == PRR_PRODUCT_M3 && cut < PRR_PRODUCT_30) || (product == PRR_PRODUCT_H3 && cut < PRR_PRODUCT_20))) { /* Disable MFIS write protection */ mmio_write_32(MFISWPCNTR, MFISWPCNTR_PASSWORD | 1U); } reg = mmio_read_32(RCAR_MODEMR); boot_cpu = reg & MODEMR_BOOT_CPU_MASK; if (boot_cpu == MODEMR_BOOT_CPU_CA57 || boot_cpu == MODEMR_BOOT_CPU_CA53) { if (product_cut == PRR_PRODUCT_H3_CUT20) { mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUVI1_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV1_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV2_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV3_IMSCTLR, IMSCTLR_DISCACHE); } else if (product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) || product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11)) { mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE); } else if ((product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) || (product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_11))) { mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUVP0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE); } if (product_cut == (PRR_PRODUCT_H3_CUT20) || product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) || product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11) || product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) { mmio_write_32(IPMMUHC_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMURT_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUMP_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUDS0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUDS1_IMSCTLR, IMSCTLR_DISCACHE); } } mmio_write_32(IPMMUMM_IMSCTLR, IPMMUMM_IMSCTLR_ENABLE); mmio_write_32(IPMMUMM_IMAUXCTLR, IPMMUMM_IMAUXCTLR_NMERGE40_BIT); rcar_swdt_release(); bl2_system_cpg_init(); #if RCAR_BL2_DCACHE == 1 /* Disable data cache (clean and invalidate) */ disable_mmu_el3(); #endif /* RCAR_BL2_DCACHE == 1 */ } static uint32_t is_ddr_backup_mode(void) { #if RCAR_SYSTEM_SUSPEND static uint32_t reason = RCAR_COLD_BOOT; static uint32_t once; if (once != 0U) { return reason; } once = 1; if ((mmio_read_32(GPIO_INDT) & GPIO_BKUP_TRG_SHIFT) == 0U) { return reason; } reason = RCAR_WARM_BOOT; return reason; #else /* RCAR_SYSTEM_SUSPEND */ return RCAR_COLD_BOOT; #endif /* RCAR_SYSTEM_SUSPEND */ } int bl2_plat_handle_pre_image_load(unsigned int image_id) { u_register_t *boot_kind = (void *)BOOT_KIND_BASE; bl_mem_params_node_t *bl_mem_params; if (image_id != BL31_IMAGE_ID) { return 0; } bl_mem_params = get_bl_mem_params_node(image_id); if (is_ddr_backup_mode() != RCAR_COLD_BOOT) { *boot_kind = RCAR_WARM_BOOT; flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind)); console_flush(); bl2_plat_flush_bl31_params(); /* will not return */ bl2_enter_bl31(&bl_mem_params->ep_info); } *boot_kind = RCAR_COLD_BOOT; flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind)); return 0; } static uint64_t rzg_get_dest_addr_from_cert(uint32_t certid, uintptr_t *dest) { uint32_t cert, len; int err; err = rcar_get_certificate(certid, &cert); if (err != 0) { ERROR("%s : cert file load error", __func__); return 1U; } rcar_read_certificate((uint64_t)cert, &len, dest); return 0U; } int bl2_plat_handle_post_image_load(unsigned int image_id) { static bl2_to_bl31_params_mem_t *params; bl_mem_params_node_t *bl_mem_params; uintptr_t dest; uint64_t ret; if (params == NULL) { params = (bl2_to_bl31_params_mem_t *)PARAMS_BASE; memset((void *)PARAMS_BASE, 0, sizeof(*params)); } bl_mem_params = get_bl_mem_params_node(image_id); switch (image_id) { case BL31_IMAGE_ID: ret = rzg_get_dest_addr_from_cert(SOC_FW_CONTENT_CERT_ID, &dest); if (ret == 0U) { bl_mem_params->image_info.image_base = dest; } break; case BL32_IMAGE_ID: ret = rzg_get_dest_addr_from_cert(TRUSTED_OS_FW_CONTENT_CERT_ID, &dest); if (ret == 0U) { bl_mem_params->image_info.image_base = dest; } memcpy(¶ms->bl32_ep_info, &bl_mem_params->ep_info, sizeof(entry_point_info_t)); break; case BL33_IMAGE_ID: memcpy(¶ms->bl33_ep_info, &bl_mem_params->ep_info, sizeof(entry_point_info_t)); break; default: break; } return 0; } struct meminfo *bl2_plat_sec_mem_layout(void) { return &bl2_tzram_layout; } static void bl2_populate_compatible_string(void *dt) { uint32_t board_type; uint32_t board_rev; uint32_t reg; int ret; fdt_setprop_u32(dt, 0, "#address-cells", 2); fdt_setprop_u32(dt, 0, "#size-cells", 2); /* Populate compatible string */ rzg_get_board_type(&board_type, &board_rev); switch (board_type) { case BOARD_HIHOPE_RZ_G2M: ret = fdt_setprop_string(dt, 0, "compatible", "hoperun,hihope-rzg2m"); break; case BOARD_HIHOPE_RZ_G2H: ret = fdt_setprop_string(dt, 0, "compatible", "hoperun,hihope-rzg2h"); break; case BOARD_HIHOPE_RZ_G2N: ret = fdt_setprop_string(dt, 0, "compatible", "hoperun,hihope-rzg2n"); break; case BOARD_EK874_RZ_G2E: ret = fdt_setprop_string(dt, 0, "compatible", "si-linux,cat874"); break; default: NOTICE("BL2: Cannot set compatible string, board unsupported\n"); panic(); break; } if (ret < 0) { NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret); panic(); } reg = mmio_read_32(RCAR_PRR); switch (reg & PRR_PRODUCT_MASK) { case PRR_PRODUCT_M3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a774a1"); break; case PRR_PRODUCT_H3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a774e1"); break; case PRR_PRODUCT_M3N: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a774b1"); break; case PRR_PRODUCT_E3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a774c0"); break; default: NOTICE("BL2: Cannot set compatible string, SoC unsupported\n"); panic(); break; } if (ret < 0) { NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret); panic(); } } static int bl2_add_memory_node(uint64_t start, uint64_t size) { char nodename[32] = { 0 }; uint64_t fdtsize; int ret, node; fdtsize = cpu_to_fdt64(size); snprintf(nodename, sizeof(nodename), "memory@"); unsigned_num_print(start, 16, nodename + strlen(nodename)); node = ret = fdt_add_subnode(fdt, 0, nodename); if (ret < 0) { return ret; } ret = fdt_setprop_string(fdt, node, "device_type", "memory"); if (ret < 0) { return ret; } ret = fdt_setprop_u64(fdt, node, "reg", start); if (ret < 0) { return ret; } return fdt_appendprop(fdt, node, "reg", &fdtsize, sizeof(fdtsize)); } static void bl2_advertise_dram_entries(uint64_t dram_config[8]) { uint64_t start, size; int ret, chan; for (chan = 0; chan < MAX_DRAM_CHANNELS; chan++) { start = dram_config[2 * chan]; size = dram_config[2 * chan + 1]; if (size == 0U) { continue; } NOTICE("BL2: CH%d: %" PRIx64 " - %" PRIx64 ", %" PRId64 " %siB\n", chan, start, start + size - 1U, (size >> 30) ? : size >> 20, (size >> 30) ? "G" : "M"); } /* * We add the DT nodes in reverse order here. The fdt_add_subnode() * adds the DT node before the first existing DT node, so we have * to add them in reverse order to get nodes sorted by address in * the resulting DT. */ for (chan = MAX_DRAM_CHANNELS - 1; chan >= 0; chan--) { start = dram_config[2 * chan]; size = dram_config[2 * chan + 1]; if (size == 0U) { continue; } /* * Channel 0 is mapped in 32bit space and the first * 128 MiB are reserved */ if (chan == 0) { /* * Maximum DDR size in Channel 0 for 32 bit space is 2GB, Add DT node * for remaining region in 64 bit address space */ if (size > MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE) { start = dram_config[chan] + MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE; size -= MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE; ret = bl2_add_memory_node(start, size); if (ret < 0) { goto err; } } start = 0x48000000U; size -= 0x8000000U; } ret = bl2_add_memory_node(start, size); if (ret < 0) { goto err; } } return; err: NOTICE("BL2: Cannot add memory node to FDT (ret=%i)\n", ret); panic(); } static void bl2_advertise_dram_size(uint32_t product) { uint64_t dram_config[8] = { [0] = 0x400000000ULL, [2] = 0x500000000ULL, [4] = 0x600000000ULL, [6] = 0x700000000ULL, }; switch (product) { case PRR_PRODUCT_M3: /* 4GB(2GBx2 2ch split) */ dram_config[1] = 0x80000000ULL; dram_config[5] = 0x80000000ULL; break; case PRR_PRODUCT_H3: #if (RCAR_DRAM_LPDDR4_MEMCONF == 0) /* 4GB(1GBx4) */ dram_config[1] = 0x40000000ULL; dram_config[3] = 0x40000000ULL; dram_config[5] = 0x40000000ULL; dram_config[7] = 0x40000000ULL; #elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && (RCAR_DRAM_CHANNEL == 5) && \ (RCAR_DRAM_SPLIT == 2) /* 4GB(2GBx2 2ch split) */ dram_config[1] = 0x80000000ULL; dram_config[3] = 0x80000000ULL; #elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && (RCAR_DRAM_CHANNEL == 15) /* 8GB(2GBx4: default) */ dram_config[1] = 0x80000000ULL; dram_config[3] = 0x80000000ULL; dram_config[5] = 0x80000000ULL; dram_config[7] = 0x80000000ULL; #endif /* RCAR_DRAM_LPDDR4_MEMCONF == 0 */ break; case PRR_PRODUCT_M3N: /* 4GB(4GBx1) */ dram_config[1] = 0x100000000ULL; break; case PRR_PRODUCT_E3: #if (RCAR_DRAM_DDR3L_MEMCONF == 0) /* 1GB(512MBx2) */ dram_config[1] = 0x40000000ULL; #elif (RCAR_DRAM_DDR3L_MEMCONF == 1) /* 2GB(512MBx4) */ dram_config[1] = 0x80000000ULL; #elif (RCAR_DRAM_DDR3L_MEMCONF == 2) /* 4GB(1GBx4) */ dram_config[1] = 0x100000000ULL; #endif /* RCAR_DRAM_DDR3L_MEMCONF == 0 */ break; default: NOTICE("BL2: Detected invalid DRAM entries\n"); break; } bl2_advertise_dram_entries(dram_config); } void bl2_el3_early_platform_setup(u_register_t arg1, u_register_t arg2, u_register_t arg3, u_register_t arg4) { uint32_t reg, midr, boot_dev, boot_cpu, type, rev; uint32_t product, product_cut, major, minor; int32_t ret; const char *str; const char *unknown = "unknown"; const char *cpu_ca57 = "CA57"; const char *cpu_ca53 = "CA53"; const char *product_g2e = "G2E"; const char *product_g2h = "G2H"; const char *product_g2m = "G2M"; const char *product_g2n = "G2N"; const char *boot_hyper80 = "HyperFlash(80MHz)"; const char *boot_qspi40 = "QSPI Flash(40MHz)"; const char *boot_qspi80 = "QSPI Flash(80MHz)"; const char *boot_emmc25x1 = "eMMC(25MHz x1)"; const char *boot_emmc50x8 = "eMMC(50MHz x8)"; #if (RCAR_LSI == RZ_G2E) uint32_t sscg; const char *sscg_on = "PLL1 SSCG Clock select"; const char *sscg_off = "PLL1 nonSSCG Clock select"; const char *boot_hyper160 = "HyperFlash(150MHz)"; #else const char *boot_hyper160 = "HyperFlash(160MHz)"; #endif /* RCAR_LSI == RZ_G2E */ #if RZG_LCS_STATE_DETECTION_ENABLE uint32_t lcs; const char *lcs_secure = "SE"; const char *lcs_cm = "CM"; const char *lcs_dm = "DM"; const char *lcs_sd = "SD"; const char *lcs_fa = "FA"; #endif /* RZG_LCS_STATE_DETECTION_ENABLE */ #if (RCAR_LOSSY_ENABLE == 1) int fcnlnode; #endif /* (RCAR_LOSSY_ENABLE == 1) */ bl2_init_generic_timer(); reg = mmio_read_32(RCAR_MODEMR); boot_dev = reg & MODEMR_BOOT_DEV_MASK; boot_cpu = reg & MODEMR_BOOT_CPU_MASK; bl2_cpg_init(); if (boot_cpu == MODEMR_BOOT_CPU_CA57 || boot_cpu == MODEMR_BOOT_CPU_CA53) { rzg_pfc_init(); rcar_console_boot_init(); } plat_rcar_gic_driver_init(); plat_rcar_gic_init(); rcar_swdt_init(); /* FIQ interrupts are taken to EL3 */ write_scr_el3(read_scr_el3() | SCR_FIQ_BIT); write_daifclr(DAIF_FIQ_BIT); reg = read_midr(); midr = reg & (MIDR_PN_MASK << MIDR_PN_SHIFT); switch (midr) { case MIDR_CA57: str = cpu_ca57; break; case MIDR_CA53: str = cpu_ca53; break; default: str = unknown; break; } NOTICE("BL2: RZ/G2 Initial Program Loader(%s) Rev.%s\n", str, version_of_renesas); reg = mmio_read_32(RCAR_PRR); product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK); product = reg & PRR_PRODUCT_MASK; switch (product) { case PRR_PRODUCT_M3: str = product_g2m; break; case PRR_PRODUCT_H3: str = product_g2h; break; case PRR_PRODUCT_M3N: str = product_g2n; break; case PRR_PRODUCT_E3: str = product_g2e; break; default: str = unknown; break; } if ((product == PRR_PRODUCT_M3) && ((reg & RCAR_MAJOR_MASK) == PRR_PRODUCT_20)) { if ((reg & PRR_CUT_MASK) == RCAR_M3_CUT_VER11) { /* M3 Ver.1.1 or Ver.1.2 */ NOTICE("BL2: PRR is RZ/%s Ver.1.1 / Ver.1.2\n", str); } else { NOTICE("BL2: PRR is RZ/%s Ver.1.%d\n", str, (reg & RCAR_MINOR_MASK) + RCAR_M3_MINOR_OFFSET); } } else { major = (reg & RCAR_MAJOR_MASK) >> RCAR_MAJOR_SHIFT; major = major + RCAR_MAJOR_OFFSET; minor = reg & RCAR_MINOR_MASK; NOTICE("BL2: PRR is RZ/%s Ver.%d.%d\n", str, major, minor); } #if (RCAR_LSI == RZ_G2E) if (product == PRR_PRODUCT_E3) { reg = mmio_read_32(RCAR_MODEMR); sscg = reg & RCAR_SSCG_MASK; str = sscg == RCAR_SSCG_ENABLE ? sscg_on : sscg_off; NOTICE("BL2: %s\n", str); } #endif /* RCAR_LSI == RZ_G2E */ rzg_get_board_type(&type, &rev); switch (type) { case BOARD_HIHOPE_RZ_G2M: case BOARD_HIHOPE_RZ_G2H: case BOARD_HIHOPE_RZ_G2N: case BOARD_EK874_RZ_G2E: break; default: type = BOARD_UNKNOWN; break; } if (type == BOARD_UNKNOWN || rev == BOARD_REV_UNKNOWN) { NOTICE("BL2: Board is %s Rev.---\n", GET_BOARD_NAME(type)); } else { NOTICE("BL2: Board is %s Rev.%d.%d\n", GET_BOARD_NAME(type), GET_BOARD_MAJOR(rev), GET_BOARD_MINOR(rev)); } #if RCAR_LSI != RCAR_AUTO if (product != TARGET_PRODUCT) { ERROR("BL2: IPL was been built for the %s.\n", TARGET_NAME); ERROR("BL2: Please write the correct IPL to flash memory.\n"); panic(); } #endif /* RCAR_LSI != RCAR_AUTO */ rcar_avs_init(); rcar_avs_setting(); switch (boot_dev) { case MODEMR_BOOT_DEV_HYPERFLASH160: str = boot_hyper160; break; case MODEMR_BOOT_DEV_HYPERFLASH80: str = boot_hyper80; break; case MODEMR_BOOT_DEV_QSPI_FLASH40: str = boot_qspi40; break; case MODEMR_BOOT_DEV_QSPI_FLASH80: str = boot_qspi80; break; case MODEMR_BOOT_DEV_EMMC_25X1: str = boot_emmc25x1; break; case MODEMR_BOOT_DEV_EMMC_50X8: str = boot_emmc50x8; break; default: str = unknown; break; } NOTICE("BL2: Boot device is %s\n", str); rcar_avs_setting(); #if RZG_LCS_STATE_DETECTION_ENABLE reg = rcar_rom_get_lcs(&lcs); if (reg != 0U) { str = unknown; goto lcm_state; } switch (lcs) { case LCS_CM: str = lcs_cm; break; case LCS_DM: str = lcs_dm; break; case LCS_SD: str = lcs_sd; break; case LCS_SE: str = lcs_secure; break; case LCS_FA: str = lcs_fa; break; default: str = unknown; break; } lcm_state: NOTICE("BL2: LCM state is %s\n", str); #endif /* RZG_LCS_STATE_DETECTION_ENABLE */ rcar_avs_end(); is_ddr_backup_mode(); bl2_tzram_layout.total_base = BL31_BASE; bl2_tzram_layout.total_size = BL31_LIMIT - BL31_BASE; if (boot_cpu == MODEMR_BOOT_CPU_CA57 || boot_cpu == MODEMR_BOOT_CPU_CA53) { ret = rcar_dram_init(); if (ret != 0) { NOTICE("BL2: Failed to DRAM initialize (%d).\n", ret); panic(); } rzg_qos_init(); } /* Set up FDT */ ret = fdt_create_empty_tree(fdt, sizeof(fdt_blob)); if (ret != 0) { NOTICE("BL2: Cannot allocate FDT for U-Boot (ret=%i)\n", ret); panic(); } /* Add platform compatible string */ bl2_populate_compatible_string(fdt); /* Print DRAM layout */ bl2_advertise_dram_size(product); if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 || boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) { if (rcar_emmc_init() != EMMC_SUCCESS) { NOTICE("BL2: Failed to eMMC driver initialize.\n"); panic(); } rcar_emmc_memcard_power(EMMC_POWER_ON); if (rcar_emmc_mount() != EMMC_SUCCESS) { NOTICE("BL2: Failed to eMMC mount operation.\n"); panic(); } } else { rcar_rpc_init(); rcar_dma_init(); } reg = mmio_read_32(RST_WDTRSTCR); reg &= ~WDTRSTCR_RWDT_RSTMSK; reg |= WDTRSTCR_PASSWORD; mmio_write_32(RST_WDTRSTCR, reg); mmio_write_32(CPG_CPGWPR, CPGWPR_PASSWORD); mmio_write_32(CPG_CPGWPCR, CPGWPCR_PASSWORD); reg = mmio_read_32(RCAR_PRR); if ((reg & RCAR_CPU_MASK_CA57) == RCAR_CPU_HAVE_CA57) { mmio_write_32(CPG_CA57DBGRCR, DBGCPUPREN | mmio_read_32(CPG_CA57DBGRCR)); } if ((reg & RCAR_CPU_MASK_CA53) == RCAR_CPU_HAVE_CA53) { mmio_write_32(CPG_CA53DBGRCR, DBGCPUPREN | mmio_read_32(CPG_CA53DBGRCR)); } if (product_cut == PRR_PRODUCT_H3_CUT10) { reg = mmio_read_32(CPG_PLL2CR); reg &= ~((uint32_t)1 << 5); mmio_write_32(CPG_PLL2CR, reg); reg = mmio_read_32(CPG_PLL4CR); reg &= ~((uint32_t)1 << 5); mmio_write_32(CPG_PLL4CR, reg); reg = mmio_read_32(CPG_PLL0CR); reg &= ~((uint32_t)1 << 12); mmio_write_32(CPG_PLL0CR, reg); } #if (RCAR_LOSSY_ENABLE == 1) NOTICE("BL2: Lossy Decomp areas\n"); fcnlnode = fdt_add_subnode(fdt, 0, "reserved-memory"); if (fcnlnode < 0) { NOTICE("BL2: Cannot create reserved mem node (ret=%i)\n", fcnlnode); panic(); } bl2_lossy_setting(0, LOSSY_ST_ADDR0, LOSSY_END_ADDR0, LOSSY_FMT0, LOSSY_ENA_DIS0, fcnlnode); bl2_lossy_setting(1, LOSSY_ST_ADDR1, LOSSY_END_ADDR1, LOSSY_FMT1, LOSSY_ENA_DIS1, fcnlnode); bl2_lossy_setting(2, LOSSY_ST_ADDR2, LOSSY_END_ADDR2, LOSSY_FMT2, LOSSY_ENA_DIS2, fcnlnode); #endif /* RCAR_LOSSY_ENABLE */ fdt_pack(fdt); NOTICE("BL2: FDT at %p\n", fdt); if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 || boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) { rcar_io_emmc_setup(); } else { rcar_io_setup(); } } void bl2_el3_plat_arch_setup(void) { #if RCAR_BL2_DCACHE == 1 NOTICE("BL2: D-Cache enable\n"); rcar_configure_mmu_el3(BL2_BASE, BL2_END - BL2_BASE, BL2_RO_BASE, BL2_RO_LIMIT #if USE_COHERENT_MEM , BL2_COHERENT_RAM_BASE, BL2_COHERENT_RAM_LIMIT #endif /* USE_COHERENT_MEM */ ); #endif /* RCAR_BL2_DCACHE == 1 */ } void bl2_platform_setup(void) { /* * Place holder for performing any platform initialization specific * to BL2. */ } static void bl2_init_generic_timer(void) { #if RCAR_LSI == RZ_G2E uint32_t reg_cntfid = EXTAL_EBISU; #else uint32_t reg_cntfid; uint32_t modemr; uint32_t modemr_pll; uint32_t pll_table[] = { EXTAL_MD14_MD13_TYPE_0, /* MD14/MD13 : 0b00 */ EXTAL_MD14_MD13_TYPE_1, /* MD14/MD13 : 0b01 */ EXTAL_MD14_MD13_TYPE_2, /* MD14/MD13 : 0b10 */ EXTAL_MD14_MD13_TYPE_3 /* MD14/MD13 : 0b11 */ }; modemr = mmio_read_32(RCAR_MODEMR); modemr_pll = (modemr & MODEMR_BOOT_PLL_MASK); /* Set frequency data in CNTFID0 */ reg_cntfid = pll_table[modemr_pll >> MODEMR_BOOT_PLL_SHIFT]; #endif /* RCAR_LSI == RZ_G2E */ /* Update memory mapped and register based frequency */ write_cntfrq_el0((u_register_t)reg_cntfid); mmio_write_32(ARM_SYS_CNTCTL_BASE + (uintptr_t)CNTFID_OFF, reg_cntfid); /* Enable counter */ mmio_setbits_32(RCAR_CNTC_BASE + (uintptr_t)CNTCR_OFF, (uint32_t)CNTCR_EN); }