/* * Copyright 2021 NXP * * SPDX-License-Identifier: BSD-3-Clause * */ #include #include #include #include #include #include #include #include static inline unsigned int cal_cwl(const unsigned long clk) { const unsigned int mclk_ps = get_memory_clk_ps(clk); return mclk_ps >= 1250U ? 9U : (mclk_ps >= 1070U ? 10U : (mclk_ps >= 935U ? 11U : (mclk_ps >= 833U ? 12U : (mclk_ps >= 750U ? 14U : (mclk_ps >= 625U ? 16U : 18U))))); } static void cal_csn_config(int i, struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct dimm_params *pdimm) { unsigned int intlv_en = 0U; unsigned int intlv_ctl = 0U; const unsigned int cs_n_en = 1U; const unsigned int ap_n_en = popts->cs_odt[i].auto_precharge; const unsigned int odt_rd_cfg = popts->cs_odt[i].odt_rd_cfg; const unsigned int odt_wr_cfg = popts->cs_odt[i].odt_wr_cfg; const unsigned int ba_bits_cs_n = pdimm->bank_addr_bits; const unsigned int row_bits_cs_n = pdimm->n_row_addr - 12U; const unsigned int col_bits_cs_n = pdimm->n_col_addr - 8U; const unsigned int bg_bits_cs_n = pdimm->bank_group_bits; if (i == 0) { /* These fields only available in CS0_CONFIG */ if (popts->ctlr_intlv != 0) { switch (popts->ctlr_intlv_mode) { case DDR_256B_INTLV: intlv_en = popts->ctlr_intlv; intlv_ctl = popts->ctlr_intlv_mode; break; default: break; } } } regs->cs[i].config = ((cs_n_en & 0x1) << 31) | ((intlv_en & 0x3) << 29) | ((intlv_ctl & 0xf) << 24) | ((ap_n_en & 0x1) << 23) | ((odt_rd_cfg & 0x7) << 20) | ((odt_wr_cfg & 0x7) << 16) | ((ba_bits_cs_n & 0x3) << 14) | ((row_bits_cs_n & 0x7) << 8) | ((bg_bits_cs_n & 0x3) << 4) | ((col_bits_cs_n & 0x7) << 0); debug("cs%d\n", i); debug(" _config = 0x%x\n", regs->cs[i].config); } static inline int avoid_odt_overlap(const struct ddr_conf *conf, const struct dimm_params *pdimm) { if ((conf->cs_in_use == 0xf) != 0) { return 2; } #if DDRC_NUM_DIMM >= 2 if (conf->dimm_in_use[0] != 0 && conf->dimm_in_use[1] != 0) { return 1; } #endif return 0; } /* Requires rcw2 set first */ static void cal_timing_cfg(const unsigned long clk, struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct dimm_params *pdimm, const struct ddr_conf *conf, unsigned int cas_latency, unsigned int additive_latency) { const unsigned int mclk_ps = get_memory_clk_ps(clk); /* tXP=max(4nCK, 6ns) */ const int txp = max((int)mclk_ps * 4, 6000); /* DDR4 supports 10, 12, 14, 16, 18, 20, 24 */ static const int wrrec_table[] = { 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 24, 24, 24, 24, }; int trwt_mclk = (clk / 1000000 > 1900) ? 3 : 2; int twrt_mclk; int trrt_mclk; int twwt_mclk; const int act_pd_exit_mclk = picos_to_mclk(clk, txp); const int pre_pd_exit_mclk = act_pd_exit_mclk; const int taxpd_mclk = 0; /* * MRS_CYC = max(tMRD, tMOD) * tMRD = 8nCK, tMOD = max(24nCK, 15ns) */ const int tmrd_mclk = max(24U, picos_to_mclk(clk, 15000)); const int pretoact_mclk = picos_to_mclk(clk, pdimm->trp_ps); const int acttopre_mclk = picos_to_mclk(clk, pdimm->tras_ps); const int acttorw_mclk = picos_to_mclk(clk, pdimm->trcd_ps); const int caslat_ctrl = (cas_latency - 1) << 1; const int trfc1_min = pdimm->die_density >= 0x3 ? 16000 : (pdimm->die_density == 0x4 ? 26000 : (pdimm->die_density == 0x5 ? 35000 : 55000)); const int refrec_ctrl = picos_to_mclk(clk, pdimm->trfc1_ps) - 8; int wrrec_mclk = picos_to_mclk(clk, pdimm->twr_ps); const int acttoact_mclk = max(picos_to_mclk(clk, pdimm->trrds_ps), 4U); int wrtord_mclk = max(2U, picos_to_mclk(clk, 2500)); const unsigned int cpo = 0U; const int wr_lat = cal_cwl(clk); int rd_to_pre = picos_to_mclk(clk, 7500); const int wr_data_delay = popts->wr_data_delay; const int cke_pls = max(3U, picos_to_mclk(clk, 5000)); #ifdef ERRATA_DDR_A050450 const unsigned short four_act = ((popts->twot_en == 0) && (popts->threet_en == 0) && (popts->tfaw_ps % 2 == 0)) ? (picos_to_mclk(clk, popts->tfaw_ps) + 1) : picos_to_mclk(clk, popts->tfaw_ps); #else const unsigned short four_act = picos_to_mclk(clk, popts->tfaw_ps); #endif const unsigned int cntl_adj = 0U; const unsigned int ext_pretoact = picos_to_mclk(clk, pdimm->trp_ps) >> 4U; const unsigned int ext_acttopre = picos_to_mclk(clk, pdimm->tras_ps) >> 4U; const unsigned int ext_acttorw = picos_to_mclk(clk, pdimm->trcd_ps) >> 4U; const unsigned int ext_caslat = (2U * cas_latency - 1U) >> 4U; const unsigned int ext_add_lat = additive_latency >> 4U; const unsigned int ext_refrec = (picos_to_mclk(clk, pdimm->trfc1_ps) - 8U) >> 4U; const unsigned int ext_wrrec = (picos_to_mclk(clk, pdimm->twr_ps) + (popts->otf_burst_chop_en ? 2U : 0U)) >> 4U; const unsigned int rwt_same_cs = 0U; const unsigned int wrt_same_cs = 0U; const unsigned int rrt_same_cs = popts->burst_length == DDR_BL8 ? 0U : 2U; const unsigned int wwt_same_cs = popts->burst_length == DDR_BL8 ? 0U : 2U; const unsigned int dll_lock = 2U; unsigned int rodt_on = 0U; const unsigned int rodt_off = 4U; const unsigned int wodt_on = 1U; const unsigned int wodt_off = 4U; const unsigned int hs_caslat = 0U; const unsigned int hs_wrlat = 0U; const unsigned int hs_wrrec = 0U; const unsigned int hs_clkadj = 0U; const unsigned int hs_wrlvl_start = 0U; const unsigned int txpr = max(5U, picos_to_mclk(clk, pdimm->trfc1_ps + 10000U)); const unsigned int tcksre = max(5U, picos_to_mclk(clk, 10000U)); const unsigned int tcksrx = max(5U, picos_to_mclk(clk, 10000U)); const unsigned int cs_to_cmd = 0U; const unsigned int cke_rst = txpr <= 200U ? 0U : (txpr <= 256U ? 1U : (txpr <= 512U ? 2U : 3U)); const unsigned int cksre = tcksre <= 19U ? tcksre - 5U : 15U; const unsigned int cksrx = tcksrx <= 19U ? tcksrx - 5U : 15U; unsigned int par_lat = 0U; const int tccdl = max(5U, picos_to_mclk(clk, pdimm->tccdl_ps)); int rwt_bg = cas_latency + 2 + 4 - wr_lat; int wrt_bg = wr_lat + 4 + 1 - cas_latency; const int rrt_bg = popts->burst_length == DDR_BL8 ? tccdl - 4 : tccdl - 2; const int wwt_bg = popts->burst_length == DDR_BL8 ? tccdl - 4 : tccdl - 2; const unsigned int acttoact_bg = picos_to_mclk(clk, pdimm->trrdl_ps); const unsigned int wrtord_bg = max(4U, picos_to_mclk(clk, 7500)) + (popts->otf_burst_chop_en ? 2 : 0); const unsigned int pre_all_rec = 0; const unsigned int refrec_cid_mclk = pdimm->package_3ds ? picos_to_mclk(clk, pdimm->trfc_slr_ps) : 0; const unsigned int acttoact_cid_mclk = pdimm->package_3ds ? 4U : 0; /* for two dual-rank DIMMs to avoid ODT overlap */ if (avoid_odt_overlap(conf, pdimm) == 2) { twrt_mclk = 2; twwt_mclk = 2; trrt_mclk = 2; } else { twrt_mclk = 1; twwt_mclk = 1; trrt_mclk = 0; } if (popts->trwt_override != 0) { trwt_mclk = popts->trwt; if (popts->twrt != 0) { twrt_mclk = popts->twrt; } if (popts->trrt != 0) { trrt_mclk = popts->trrt; } if (popts->twwt != 0) { twwt_mclk = popts->twwt; } } regs->timing_cfg[0] = (((trwt_mclk & 0x3) << 30) | ((twrt_mclk & 0x3) << 28) | ((trrt_mclk & 0x3) << 26) | ((twwt_mclk & 0x3) << 24) | ((act_pd_exit_mclk & 0xf) << 20) | ((pre_pd_exit_mclk & 0xF) << 16) | ((taxpd_mclk & 0xf) << 8) | ((tmrd_mclk & 0x1f) << 0)); debug("timing_cfg[0] = 0x%x\n", regs->timing_cfg[0]); if ((wrrec_mclk < 1) || (wrrec_mclk > 24)) { ERROR("WRREC doesn't support clock %d\n", wrrec_mclk); } else { wrrec_mclk = wrrec_table[wrrec_mclk - 1]; } if (popts->otf_burst_chop_en != 0) { wrrec_mclk += 2; wrtord_mclk += 2; } if (pdimm->trfc1_ps < trfc1_min) { ERROR("trfc1_ps (%d) < %d\n", pdimm->trfc1_ps, trfc1_min); } regs->timing_cfg[1] = (((pretoact_mclk & 0x0F) << 28) | ((acttopre_mclk & 0x0F) << 24) | ((acttorw_mclk & 0xF) << 20) | ((caslat_ctrl & 0xF) << 16) | ((refrec_ctrl & 0xF) << 12) | ((wrrec_mclk & 0x0F) << 8) | ((acttoact_mclk & 0x0F) << 4) | ((wrtord_mclk & 0x0F) << 0)); debug("timing_cfg[1] = 0x%x\n", regs->timing_cfg[1]); if (rd_to_pre < 4) { rd_to_pre = 4; } if (popts->otf_burst_chop_en) { rd_to_pre += 2; } regs->timing_cfg[2] = (((additive_latency & 0xf) << 28) | ((cpo & 0x1f) << 23) | ((wr_lat & 0xf) << 19) | (((wr_lat & 0x10) >> 4) << 18) | ((rd_to_pre & 0xf) << 13) | ((wr_data_delay & 0xf) << 9) | ((cke_pls & 0x7) << 6) | ((four_act & 0x3f) << 0)); debug("timing_cfg[2] = 0x%x\n", regs->timing_cfg[2]); regs->timing_cfg[3] = (((ext_pretoact & 0x1) << 28) | ((ext_acttopre & 0x3) << 24) | ((ext_acttorw & 0x1) << 22) | ((ext_refrec & 0x3F) << 16) | ((ext_caslat & 0x3) << 12) | ((ext_add_lat & 0x1) << 10) | ((ext_wrrec & 0x1) << 8) | ((cntl_adj & 0x7) << 0)); debug("timing_cfg[3] = 0x%x\n", regs->timing_cfg[3]); regs->timing_cfg[4] = (((rwt_same_cs & 0xf) << 28) | ((wrt_same_cs & 0xf) << 24) | ((rrt_same_cs & 0xf) << 20) | ((wwt_same_cs & 0xf) << 16) | ((trwt_mclk & 0xc) << 12) | ((twrt_mclk & 0x4) << 10) | ((trrt_mclk & 0x4) << 8) | ((twwt_mclk & 0x4) << 6) | (dll_lock & 0x3)); debug("timing_cfg[4] = 0x%x\n", regs->timing_cfg[4]); /* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */ if (cas_latency >= wr_lat) { rodt_on = cas_latency - wr_lat + 1; } regs->timing_cfg[5] = (((rodt_on & 0x1f) << 24) | ((rodt_off & 0x7) << 20) | ((wodt_on & 0x1f) << 12) | (wodt_off & 0x7) << 8); debug("timing_cfg[5] = 0x%x\n", regs->timing_cfg[5]); regs->timing_cfg[6] = (((hs_caslat & 0x1f) << 24) | ((hs_wrlat & 0x1f) << 19) | ((hs_wrrec & 0x1f) << 12) | ((hs_clkadj & 0x1f) << 6) | ((hs_wrlvl_start & 0x1f) << 0)); debug("timing_cfg[6] = 0x%x\n", regs->timing_cfg[6]); if (popts->ap_en != 0) { par_lat = (regs->sdram_rcw[1] & 0xf) + 1; debug("PAR_LAT = 0x%x\n", par_lat); } regs->timing_cfg[7] = (((cke_rst & 0x3) << 28) | ((cksre & 0xf) << 24) | ((cksrx & 0xf) << 20) | ((par_lat & 0xf) << 16) | ((cs_to_cmd & 0xf) << 4)); debug("timing_cfg[7] = 0x%x\n", regs->timing_cfg[7]); if (rwt_bg < tccdl) { rwt_bg = tccdl - rwt_bg; } else { rwt_bg = 0; } if (wrt_bg < tccdl) { wrt_bg = tccdl - wrt_bg; } else { wrt_bg = 0; } regs->timing_cfg[8] = (((rwt_bg & 0xf) << 28) | ((wrt_bg & 0xf) << 24) | ((rrt_bg & 0xf) << 20) | ((wwt_bg & 0xf) << 16) | ((acttoact_bg & 0xf) << 12) | ((wrtord_bg & 0xf) << 8) | ((pre_all_rec & 0x1f) << 0)); debug("timing_cfg[8] = 0x%x\n", regs->timing_cfg[8]); regs->timing_cfg[9] = (refrec_cid_mclk & 0x3ff) << 16 | (acttoact_cid_mclk & 0xf) << 8; debug("timing_cfg[9] = 0x%x\n", regs->timing_cfg[9]); } static void cal_ddr_sdram_rcw(const unsigned long clk, struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct dimm_params *pdimm) { const unsigned int freq = clk / 1000000U; unsigned int rc0a, rc0f; if (pdimm->rdimm == 0) { return; } rc0a = freq > 3200U ? 7U : (freq > 2933U ? 6U : (freq > 2666U ? 5U : (freq > 2400U ? 4U : (freq > 2133U ? 3U : (freq > 1866U ? 2U : (freq > 1600U ? 1U : 0U)))))); rc0f = freq > 3200U ? 3U : (freq > 2400U ? 2U : (freq > 2133U ? 1U : 0U)); rc0f = (regs->sdram_cfg[1] & SDRAM_CFG2_AP_EN) ? rc0f : 4; regs->sdram_rcw[0] = pdimm->rcw[0] << 28 | pdimm->rcw[1] << 24 | pdimm->rcw[2] << 20 | pdimm->rcw[3] << 16 | pdimm->rcw[4] << 12 | pdimm->rcw[5] << 8 | pdimm->rcw[6] << 4 | pdimm->rcw[7]; regs->sdram_rcw[1] = pdimm->rcw[8] << 28 | pdimm->rcw[9] << 24 | rc0a << 20 | pdimm->rcw[11] << 16 | pdimm->rcw[12] << 12 | pdimm->rcw[13] << 8 | pdimm->rcw[14] << 4 | rc0f; regs->sdram_rcw[2] = ((freq - 1260 + 19) / 20) << 8; debug("sdram_rcw[0] = 0x%x\n", regs->sdram_rcw[0]); debug("sdram_rcw[1] = 0x%x\n", regs->sdram_rcw[1]); debug("sdram_rcw[2] = 0x%x\n", regs->sdram_rcw[2]); } static void cal_ddr_sdram_cfg(const unsigned long clk, struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct dimm_params *pdimm, const unsigned int ip_rev) { const unsigned int mem_en = 1U; const unsigned int sren = popts->self_refresh_in_sleep; const unsigned int ecc_en = popts->ecc_mode; const unsigned int rd_en = (pdimm->rdimm != 0U) ? 1U : 0U; const unsigned int dyn_pwr = popts->dynamic_power; const unsigned int dbw = popts->data_bus_used; const unsigned int eight_be = (dbw == 1U || popts->burst_length == DDR_BL8) ? 1U : 0U; const unsigned int ncap = 0U; const unsigned int threet_en = popts->threet_en; const unsigned int twot_en = pdimm->rdimm ? 0U : popts->twot_en; const unsigned int ba_intlv = popts->ba_intlv; const unsigned int x32_en = 0U; const unsigned int pchb8 = 0U; const unsigned int hse = popts->half_strength_drive_en; const unsigned int acc_ecc_en = (dbw != 0U && ecc_en == 1U) ? 1U : 0U; const unsigned int mem_halt = 0U; #ifdef PHY_GEN2 const unsigned int bi = 1U; #else const unsigned int bi = 0U; #endif const unsigned int sdram_type = SDRAM_TYPE_DDR4; unsigned int odt_cfg = 0U; const unsigned int frc_sr = 0U; const unsigned int sr_ie = popts->self_refresh_irq_en; const unsigned int num_pr = pdimm->package_3ds + 1U; const unsigned int slow = (clk < 1249000000U) ? 1U : 0U; const unsigned int x4_en = popts->x4_en; const unsigned int obc_cfg = popts->otf_burst_chop_en; const unsigned int ap_en = ip_rev == 0x50500U ? 0U : popts->ap_en; const unsigned int d_init = popts->ctlr_init_ecc; const unsigned int rcw_en = popts->rdimm; const unsigned int md_en = popts->mirrored_dimm; const unsigned int qd_en = popts->quad_rank_present; const unsigned int unq_mrs_en = ip_rev < 0x50500U ? 1U : 0U; const unsigned int rd_pre = popts->quad_rank_present; int i; regs->sdram_cfg[0] = ((mem_en & 0x1) << 31) | ((sren & 0x1) << 30) | ((ecc_en & 0x1) << 29) | ((rd_en & 0x1) << 28) | ((sdram_type & 0x7) << 24) | ((dyn_pwr & 0x1) << 21) | ((dbw & 0x3) << 19) | ((eight_be & 0x1) << 18) | ((ncap & 0x1) << 17) | ((threet_en & 0x1) << 16) | ((twot_en & 0x1) << 15) | ((ba_intlv & 0x7F) << 8) | ((x32_en & 0x1) << 5) | ((pchb8 & 0x1) << 4) | ((hse & 0x1) << 3) | ((acc_ecc_en & 0x1) << 2) | ((mem_halt & 0x1) << 1) | ((bi & 0x1) << 0); debug("sdram_cfg[0] = 0x%x\n", regs->sdram_cfg[0]); for (i = 0; i < DDRC_NUM_CS; i++) { if (popts->cs_odt[i].odt_rd_cfg != 0 || popts->cs_odt[i].odt_wr_cfg != 0) { odt_cfg = SDRAM_CFG2_ODT_ONLY_READ; break; } } regs->sdram_cfg[1] = (0 | ((frc_sr & 0x1) << 31) | ((sr_ie & 0x1) << 30) | ((odt_cfg & 0x3) << 21) | ((num_pr & 0xf) << 12) | ((slow & 1) << 11) | (x4_en << 10) | (qd_en << 9) | (unq_mrs_en << 8) | ((obc_cfg & 0x1) << 6) | ((ap_en & 0x1) << 5) | ((d_init & 0x1) << 4) | ((rcw_en & 0x1) << 2) | ((md_en & 0x1) << 0) ); debug("sdram_cfg[1] = 0x%x\n", regs->sdram_cfg[1]); regs->sdram_cfg[2] = (rd_pre & 0x1) << 16 | (popts->rdimm ? 1 : 0); if (pdimm->package_3ds != 0) { if (((pdimm->package_3ds + 1) & 0x1) != 0) { WARN("Unsupported 3DS DIMM\n"); } else { regs->sdram_cfg[2] |= ((pdimm->package_3ds + 1) >> 1) << 4; } } debug("sdram_cfg[2] = 0x%x\n", regs->sdram_cfg[2]); } static void cal_ddr_sdram_interval(const unsigned long clk, struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct dimm_params *pdimm) { const unsigned int refint = picos_to_mclk(clk, pdimm->refresh_rate_ps); const unsigned int bstopre = popts->bstopre; regs->interval = ((refint & 0xFFFF) << 16) | ((bstopre & 0x3FFF) << 0); debug("interval = 0x%x\n", regs->interval); } /* Require cs and cfg first */ static void cal_ddr_sdram_mode(const unsigned long clk, struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct ddr_conf *conf, const struct dimm_params *pdimm, unsigned int cas_latency, unsigned int additive_latency, const unsigned int ip_rev) { int i; unsigned short esdmode; /* Extended SDRAM mode */ unsigned short sdmode; /* SDRAM mode */ /* Mode Register - MR1 */ const unsigned int qoff = 0; const unsigned int tdqs_en = 0; unsigned int rtt; const unsigned int wrlvl_en = 0; unsigned int al = 0; unsigned int dic = 0; const unsigned int dll_en = 1; /* Mode Register - MR0 */ unsigned int wr = 0; const unsigned int dll_rst = 0; const unsigned int mode = 0; unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */ /* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */ const unsigned int bt = 0; const unsigned int bl = popts->burst_length == DDR_BL8 ? 0 : (popts->burst_length == DDR_BC4 ? 2 : 1); const unsigned int wr_mclk = picos_to_mclk(clk, pdimm->twr_ps); /* DDR4 support WR 10, 12, 14, 16, 18, 20, 24 */ static const int wr_table[] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6 }; /* DDR4 support CAS 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24 */ static const int cas_latency_table[] = { 0, 1, 2, 3, 4, 5, 6, 7, 13, 8, 14, 9, 15, 10, 12, 11, 16, 17, 18, 19, 20, 21, 22, 23 }; const unsigned int unq_mrs_en = ip_rev < U(0x50500) ? 1U : 0U; unsigned short esdmode2 = 0U; unsigned short esdmode3 = 0U; const unsigned int wr_crc = 0U; unsigned int rtt_wr = 0U; const unsigned int srt = 0U; unsigned int cwl = cal_cwl(clk); const unsigned int mpr = 0U; const unsigned int mclk_ps = get_memory_clk_ps(clk); const unsigned int wc_lat = 0U; unsigned short esdmode4 = 0U; unsigned short esdmode5; int rtt_park_all = 0; unsigned int rtt_park; const bool four_cs = conf->cs_in_use == 0xf ? true : false; unsigned short esdmode6 = 0U; /* Extended SDRAM mode 6 */ unsigned short esdmode7 = 0U; /* Extended SDRAM mode 7 */ const unsigned int tccdl_min = max(5U, picos_to_mclk(clk, pdimm->tccdl_ps)); if (popts->rtt_override != 0U) { rtt = popts->rtt_override_value; } else { rtt = popts->cs_odt[0].odt_rtt_norm; } if (additive_latency == (cas_latency - 1)) { al = 1; } if (additive_latency == (cas_latency - 2)) { al = 2; } if (popts->quad_rank_present != 0 || popts->output_driver_impedance != 0) { dic = 1; /* output driver impedance 240/7 ohm */ } esdmode = (((qoff & 0x1) << 12) | ((tdqs_en & 0x1) << 11) | ((rtt & 0x7) << 8) | ((wrlvl_en & 0x1) << 7) | ((al & 0x3) << 3) | ((dic & 0x3) << 1) | ((dll_en & 0x1) << 0)); if (wr_mclk >= 10 && wr_mclk <= 24) { wr = wr_table[wr_mclk - 10]; } else { ERROR("unsupported wc_mclk = %d for mode register\n", wr_mclk); } /* look up table to get the cas latency bits */ if (cas_latency >= 9 && cas_latency <= 32) { caslat = cas_latency_table[cas_latency - 9]; } else { WARN("Error: unsupported cas latency for mode register\n"); } sdmode = (((caslat & 0x10) << 8) | ((wr & 0x7) << 9) | ((dll_rst & 0x1) << 8) | ((mode & 0x1) << 7) | (((caslat >> 1) & 0x7) << 4) | ((bt & 0x1) << 3) | ((caslat & 1) << 2) | ((bl & 0x3) << 0)); regs->sdram_mode[0] = (((esdmode & 0xFFFF) << 16) | ((sdmode & 0xFFFF) << 0)); debug("sdram_mode[0] = 0x%x\n", regs->sdram_mode[0]); switch (cwl) { case 9: case 10: case 11: case 12: cwl -= 9; break; case 14: cwl -= 10; break; case 16: cwl -= 11; break; case 18: cwl -= 12; break; case 20: cwl -= 13; break; default: printf("Error CWL\n"); break; } if (popts->rtt_override != 0) { rtt_wr = popts->rtt_wr_override_value; } else { rtt_wr = popts->cs_odt[0].odt_rtt_wr; } esdmode2 = ((wr_crc & 0x1) << 12) | ((rtt_wr & 0x7) << 9) | ((srt & 0x3) << 6) | ((cwl & 0x7) << 3); esdmode3 = ((mpr & 0x3) << 11) | ((wc_lat & 0x3) << 9); regs->sdram_mode[1] = ((esdmode2 & 0xFFFF) << 16) | ((esdmode3 & 0xFFFF) << 0); debug("sdram_mode[1] = 0x%x\n", regs->sdram_mode[1]); esdmode6 = ((tccdl_min - 4) & 0x7) << 10; if (popts->vref_dimm != 0) { esdmode6 |= popts->vref_dimm & 0x7f; } else if ((popts->ddr_cdr2 & DDR_CDR2_VREF_RANGE_2) != 0) { esdmode6 |= 1 << 6; /* Range 2 */ } regs->sdram_mode[9] = ((esdmode6 & 0xffff) << 16) | ((esdmode7 & 0xffff) << 0); debug("sdram_mode[9] = 0x%x\n", regs->sdram_mode[9]); rtt_park = (popts->rtt_park != 0) ? popts->rtt_park : 240; switch (rtt_park) { case 240: rtt_park = 0x4; break; case 120: rtt_park = 0x2; break; case 80: rtt_park = 0x6; break; case 60: rtt_park = 0x1; break; case 48: rtt_park = 0x5; break; case 40: rtt_park = 0x3; break; case 34: rtt_park = 0x7; break; default: rtt_park = 0; break; } for (i = 0; i < DDRC_NUM_CS; i++) { if (i != 0 && unq_mrs_en == 0) { break; } if (popts->rtt_override != 0) { rtt = popts->rtt_override_value; rtt_wr = popts->rtt_wr_override_value; } else { rtt = popts->cs_odt[i].odt_rtt_norm; rtt_wr = popts->cs_odt[i].odt_rtt_wr; } esdmode &= 0xF8FF; /* clear bit 10,9,8 for rtt */ esdmode |= (rtt & 0x7) << 8; esdmode2 &= 0xF9FF; /* clear bit 10, 9 */ esdmode2 |= (rtt_wr & 0x3) << 9; esdmode5 = (popts->x4_en) ? 0 : 0x400; /* data mask */ if (rtt_park_all == 0 && ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) != 0)) { esdmode5 |= rtt_park << 6; rtt_park_all = four_cs ? 0 : 1; } if (((regs->sdram_cfg[1] & SDRAM_CFG2_AP_EN) != 0) && (popts->rdimm == 0)) { if (mclk_ps >= 935) { esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK; } else if (mclk_ps >= 833) { esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK; } else { esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK; WARN("mclk_ps not supported %d", mclk_ps); } } switch (i) { case 0: regs->sdram_mode[8] = ((esdmode4 & 0xffff) << 16) | ((esdmode5 & 0xffff) << 0); debug("sdram_mode[8] = 0x%x\n", regs->sdram_mode[8]); break; case 1: regs->sdram_mode[2] = (((esdmode & 0xFFFF) << 16) | ((sdmode & 0xFFFF) << 0)); regs->sdram_mode[3] = ((esdmode2 & 0xFFFF) << 16) | ((esdmode3 & 0xFFFF) << 0); regs->sdram_mode[10] = ((esdmode4 & 0xFFFF) << 16) | ((esdmode5 & 0xFFFF) << 0); regs->sdram_mode[11] = ((esdmode6 & 0xFFFF) << 16) | ((esdmode7 & 0xFFFF) << 0); debug("sdram_mode[2] = 0x%x\n", regs->sdram_mode[2]); debug("sdram_mode[3] = 0x%x\n", regs->sdram_mode[3]); debug("sdram_mode[10] = 0x%x\n", regs->sdram_mode[10]); debug("sdram_mode[11] = 0x%x\n", regs->sdram_mode[11]); break; case 2: regs->sdram_mode[4] = (((esdmode & 0xFFFF) << 16) | ((sdmode & 0xFFFF) << 0)); regs->sdram_mode[5] = ((esdmode2 & 0xFFFF) << 16) | ((esdmode3 & 0xFFFF) << 0); regs->sdram_mode[12] = ((esdmode4 & 0xFFFF) << 16) | ((esdmode5 & 0xFFFF) << 0); regs->sdram_mode[13] = ((esdmode6 & 0xFFFF) << 16) | ((esdmode7 & 0xFFFF) << 0); debug("sdram_mode[4] = 0x%x\n", regs->sdram_mode[4]); debug("sdram_mode[5] = 0x%x\n", regs->sdram_mode[5]); debug("sdram_mode[12] = 0x%x\n", regs->sdram_mode[12]); debug("sdram_mode[13] = 0x%x\n", regs->sdram_mode[13]); break; case 3: regs->sdram_mode[6] = (((esdmode & 0xFFFF) << 16) | ((sdmode & 0xFFFF) << 0)); regs->sdram_mode[7] = ((esdmode2 & 0xFFFF) << 16) | ((esdmode3 & 0xFFFF) << 0); regs->sdram_mode[14] = ((esdmode4 & 0xFFFF) << 16) | ((esdmode5 & 0xFFFF) << 0); regs->sdram_mode[15] = ((esdmode6 & 0xFFFF) << 16) | ((esdmode7 & 0xFFFF) << 0); debug("sdram_mode[6] = 0x%x\n", regs->sdram_mode[6]); debug("sdram_mode[7] = 0x%x\n", regs->sdram_mode[7]); debug("sdram_mode[14] = 0x%x\n", regs->sdram_mode[14]); debug("sdram_mode[15] = 0x%x\n", regs->sdram_mode[15]); break; default: break; } } } #ifndef CONFIG_MEM_INIT_VALUE #define CONFIG_MEM_INIT_VALUE 0xDEADBEEF #endif static void cal_ddr_data_init(struct ddr_cfg_regs *regs) { regs->data_init = CONFIG_MEM_INIT_VALUE; } static void cal_ddr_dq_mapping(struct ddr_cfg_regs *regs, const struct dimm_params *pdimm) { const unsigned int acc_ecc_en = (regs->sdram_cfg[0] >> 2) & 0x1; /* FIXME: revert the dq mapping from DIMM */ regs->dq_map[0] = ((pdimm->dq_mapping[0] & 0x3F) << 26) | ((pdimm->dq_mapping[1] & 0x3F) << 20) | ((pdimm->dq_mapping[2] & 0x3F) << 14) | ((pdimm->dq_mapping[3] & 0x3F) << 8) | ((pdimm->dq_mapping[4] & 0x3F) << 2); regs->dq_map[1] = ((pdimm->dq_mapping[5] & 0x3F) << 26) | ((pdimm->dq_mapping[6] & 0x3F) << 20) | ((pdimm->dq_mapping[7] & 0x3F) << 14) | ((pdimm->dq_mapping[10] & 0x3F) << 8) | ((pdimm->dq_mapping[11] & 0x3F) << 2); regs->dq_map[2] = ((pdimm->dq_mapping[12] & 0x3F) << 26) | ((pdimm->dq_mapping[13] & 0x3F) << 20) | ((pdimm->dq_mapping[14] & 0x3F) << 14) | ((pdimm->dq_mapping[15] & 0x3F) << 8) | ((pdimm->dq_mapping[16] & 0x3F) << 2); /* dq_map for ECC[4:7] is set to 0 if accumulated ECC is enabled */ regs->dq_map[3] = ((pdimm->dq_mapping[17] & 0x3F) << 26) | ((pdimm->dq_mapping[8] & 0x3F) << 20) | ((acc_ecc_en != 0) ? 0 : (pdimm->dq_mapping[9] & 0x3F) << 14) | pdimm->dq_mapping_ors; debug("dq_map[0] = 0x%x\n", regs->dq_map[0]); debug("dq_map[1] = 0x%x\n", regs->dq_map[1]); debug("dq_map[2] = 0x%x\n", regs->dq_map[2]); debug("dq_map[3] = 0x%x\n", regs->dq_map[3]); } static void cal_ddr_zq_cntl(struct ddr_cfg_regs *regs) { const unsigned int zqinit = 10U; /* 1024 clocks */ const unsigned int zqoper = 9U; /* 512 clocks */ const unsigned int zqcs = 7U; /* 128 clocks */ const unsigned int zqcs_init = 5U; /* 1024 refresh seqences */ const unsigned int zq_en = 1U; /* enabled */ regs->zq_cntl = ((zq_en & 0x1) << 31) | ((zqinit & 0xF) << 24) | ((zqoper & 0xF) << 16) | ((zqcs & 0xF) << 8) | ((zqcs_init & 0xF) << 0); debug("zq_cntl = 0x%x\n", regs->zq_cntl); } static void cal_ddr_sr_cntr(struct ddr_cfg_regs *regs, const struct memctl_opt *popts) { const unsigned int sr_it = (popts->auto_self_refresh_en) ? popts->sr_it : 0; regs->ddr_sr_cntr = (sr_it & 0xF) << 16; debug("ddr_sr_cntr = 0x%x\n", regs->ddr_sr_cntr); } static void cal_ddr_eor(struct ddr_cfg_regs *regs, const struct memctl_opt *popts) { if (popts->addr_hash != 0) { regs->eor = 0x40000000; /* address hash enable */ debug("eor = 0x%x\n", regs->eor); } } static void cal_ddr_csn_bnds(struct ddr_cfg_regs *regs, const struct memctl_opt *popts, const struct ddr_conf *conf, const struct dimm_params *pdimm) { int i; unsigned long long ea, sa; /* Chip Select Memory Bounds (CSn_BNDS) */ for (i = 0; i < DDRC_NUM_CS && conf->cs_size[i]; i++) { debug("cs_in_use = 0x%x\n", conf->cs_in_use); if (conf->cs_in_use != 0) { sa = conf->cs_base_addr[i]; ea = sa + conf->cs_size[i] - 1; sa >>= 24; ea >>= 24; regs->cs[i].bnds = ((sa & 0xffff) << 16) | ((ea & 0xffff) << 0); cal_csn_config(i, regs, popts, pdimm); } else { /* setting bnds to 0xffffffff for inactive CS */ regs->cs[i].bnds = 0xffffffff; } debug("cs[%d].bnds = 0x%x\n", i, regs->cs[i].bnds); } } static void cal_ddr_addr_dec(struct ddr_cfg_regs *regs) { #ifdef CONFIG_DDR_ADDR_DEC unsigned int ba_bits __unused; char p __unused; const unsigned int cs0_config = regs->cs[0].config; const int cacheline = PLATFORM_CACHE_LINE_SHIFT; unsigned int bg_bits; unsigned int row_bits; unsigned int col_bits; unsigned int cs; unsigned int map_row[18]; unsigned int map_col[11]; unsigned int map_ba[2]; unsigned int map_cid[2] = {0x3F, 0x3F}; unsigned int map_bg[2] = {0x3F, 0x3F}; unsigned int map_cs[2] = {0x3F, 0x3F}; unsigned int dbw; unsigned int ba_intlv; int placement; int intlv; int abort = 0; int i; int j; col_bits = (cs0_config >> 0) & 0x7; if (col_bits < 4) { col_bits += 8; } else if (col_bits < 7 || col_bits > 10) { ERROR("Error %s col_bits = %d\n", __func__, col_bits); } row_bits = ((cs0_config >> 8) & 0x7) + 12; ba_bits = ((cs0_config >> 14) & 0x3) + 2; bg_bits = ((cs0_config >> 4) & 0x3) + 0; intlv = (cs0_config >> 24) & 0xf; ba_intlv = (regs->sdram_cfg[0] >> 8) & 0x7f; switch (ba_intlv) { case DDR_BA_INTLV_CS01: cs = 1; break; case DDR_BA_INTLV_CS0123: cs = 2; break; case DDR_BA_NONE: cs = 0; break; default: ERROR("%s ba_intlv 0x%x\n", __func__, ba_intlv); return; } debug("col %d, row %d, ba %d, bg %d, intlv %d\n", col_bits, row_bits, ba_bits, bg_bits, intlv); /* * Example mapping of 15x2x2x10 * ---- --rr rrrr rrrr rrrr rCBB Gccc cccI cGcc cbbb */ dbw = (regs->sdram_cfg[0] >> 19) & 0x3; switch (dbw) { case 0: /* 64-bit */ placement = 3; break; case 1: /* 32-bit */ placement = 2; break; default: ERROR("%s dbw = %d\n", __func__, dbw); return; } debug("cacheline size %d\n", cacheline); for (i = 0; placement < cacheline; i++) { map_col[i] = placement++; } map_bg[0] = placement++; for ( ; i < col_bits; i++) { map_col[i] = placement++; if (placement == intlv) { placement++; } } for ( ; i < 11; i++) { map_col[i] = 0x3F; /* unused col bits */ } if (bg_bits >= 2) { map_bg[1] = placement++; } map_ba[0] = placement++; map_ba[1] = placement++; if (cs != 0U) { map_cs[0] = placement++; if (cs == 2U) { map_cs[1] = placement++; } } else { map_cs[0] = U(0x3F); } for (i = 0; i < row_bits; i++) { map_row[i] = placement++; } for ( ; i < 18; i++) { map_row[i] = 0x3F; /* unused row bits */ } for (i = 39; i >= 0 ; i--) { if (i == intlv) { placement = 8; p = 'I'; } else if (i < 3) { p = 'b'; placement = 0; } else { placement = 0; p = '-'; } for (j = 0; j < 18; j++) { if (map_row[j] != i) { continue; } if (placement != 0) { abort = 1; ERROR("%s wrong address bit %d\n", __func__, i); } placement = i; p = 'r'; } for (j = 0; j < 11; j++) { if (map_col[j] != i) { continue; } if (placement != 0) { abort = 1; ERROR("%s wrong address bit %d\n", __func__, i); } placement = i; p = 'c'; } for (j = 0; j < 2; j++) { if (map_ba[j] != i) { continue; } if (placement != 0) { abort = 1; ERROR("%s wrong address bit %d\n", __func__, i); } placement = i; p = 'B'; } for (j = 0; j < 2; j++) { if (map_bg[j] != i) { continue; } if (placement != 0) { abort = 1; ERROR("%s wrong address bit %d\n", __func__, i); } placement = i; p = 'G'; } for (j = 0; j < 2; j++) { if (map_cs[j] != i) { continue; } if (placement != 0) { abort = 1; ERROR("%s wrong address bit %d\n", __func__, i); } placement = i; p = 'C'; } #ifdef DDR_DEBUG printf("%c", p); if ((i % 4) == 0) { printf(" "); } #endif } #ifdef DDR_DEBUG puts("\n"); #endif if (abort != 0) { return; } regs->dec[0] = map_row[17] << 26 | map_row[16] << 18 | map_row[15] << 10 | map_row[14] << 2; regs->dec[1] = map_row[13] << 26 | map_row[12] << 18 | map_row[11] << 10 | map_row[10] << 2; regs->dec[2] = map_row[9] << 26 | map_row[8] << 18 | map_row[7] << 10 | map_row[6] << 2; regs->dec[3] = map_row[5] << 26 | map_row[4] << 18 | map_row[3] << 10 | map_row[2] << 2; regs->dec[4] = map_row[1] << 26 | map_row[0] << 18 | map_col[10] << 10 | map_col[9] << 2; regs->dec[5] = map_col[8] << 26 | map_col[7] << 18 | map_col[6] << 10 | map_col[5] << 2; regs->dec[6] = map_col[4] << 26 | map_col[3] << 18 | map_col[2] << 10 | map_col[1] << 2; regs->dec[7] = map_col[0] << 26 | map_ba[1] << 18 | map_ba[0] << 10 | map_cid[1] << 2; regs->dec[8] = map_cid[1] << 26 | map_cs[1] << 18 | map_cs[0] << 10 | map_bg[1] << 2; regs->dec[9] = map_bg[0] << 26 | 1; for (i = 0; i < 10; i++) { debug("dec[%d] = 0x%x\n", i, regs->dec[i]); } #endif } static unsigned int skip_caslat(unsigned int tckmin_ps, unsigned int taamin_ps, unsigned int mclk_ps, unsigned int package_3ds) { int i, j, k; struct cas { const unsigned int tckmin_ps; const unsigned int caslat[4]; }; struct speed { const struct cas *cl; const unsigned int taamin_ps[4]; }; const struct cas cl_3200[] = { {625, {0xa00000, 0xb00000, 0xf000000,} }, {750, { 0x20000, 0x60000, 0xe00000,} }, {833, { 0x8000, 0x18000, 0x38000,} }, {937, { 0x4000, 0x4000, 0xc000,} }, {1071, { 0x1000, 0x1000, 0x3000,} }, {1250, { 0x400, 0x400, 0xc00,} }, {1500, { 0, 0x600, 0x200,} }, }; const struct cas cl_2933[] = { {682, { 0, 0x80000, 0x180000, 0x380000} }, {750, { 0x20000, 0x60000, 0x60000, 0xe0000} }, {833, { 0x8000, 0x18000, 0x18000, 0x38000} }, {937, { 0x4000, 0x4000, 0x4000, 0xc000} }, {1071, { 0x1000, 0x1000, 0x1000, 0x3000} }, {1250, { 0x400, 0x400, 0x400, 0xc00} }, {1500, { 0, 0x200, 0x200, 0x200} }, }; const struct cas cl_2666[] = { {750, { 0, 0x20000, 0x60000, 0xe0000} }, {833, { 0x8000, 0x18000, 0x18000, 0x38000} }, {937, { 0x4000, 0x4000, 0x4000, 0xc000} }, {1071, { 0x1000, 0x1000, 0x1000, 0x3000} }, {1250, { 0x400, 0x400, 0x400, 0xc00} }, {1500, { 0, 0, 0x200, 0x200} }, }; const struct cas cl_2400[] = { {833, { 0, 0x8000, 0x18000, 0x38000} }, {937, { 0xc000, 0x4000, 0x4000, 0xc000} }, {1071, { 0x3000, 0x1000, 0x1000, 0x3000} }, {1250, { 0xc00, 0x400, 0x400, 0xc00} }, {1500, { 0, 0x400, 0x200, 0x200} }, }; const struct cas cl_2133[] = { {937, { 0, 0x4000, 0xc000,} }, {1071, { 0x2000, 0, 0x2000,} }, {1250, { 0x800, 0, 0x800,} }, {1500, { 0, 0x400, 0x200,} }, }; const struct cas cl_1866[] = { {1071, { 0, 0x1000, 0x3000,} }, {1250, { 0xc00, 0x400, 0xc00,} }, {1500, { 0, 0x400, 0x200,} }, }; const struct cas cl_1600[] = { {1250, { 0, 0x400, 0xc00,} }, {1500, { 0, 0x400, 0x200,} }, }; const struct speed bin_0[] = { {cl_3200, {12500, 13750, 15000,} }, {cl_2933, {12960, 13640, 13750, 15000,} }, {cl_2666, {12750, 13500, 13750, 15000,} }, {cl_2400, {12500, 13320, 13750, 15000,} }, {cl_2133, {13130, 13500, 15000,} }, {cl_1866, {12850, 13500, 15000,} }, {cl_1600, {12500, 13500, 15000,} } }; const struct cas cl_3200_3ds[] = { {625, { 0xa000000, 0xb000000, 0xf000000,} }, {750, { 0xaa00000, 0xab00000, 0xef00000,} }, {833, { 0xaac0000, 0xaac0000, 0xebc0000,} }, {937, { 0xaab0000, 0xaab0000, 0xeaf0000,} }, {1071, { 0xaaa4000, 0xaaac000, 0xeaec000,} }, {1250, { 0xaaa0000, 0xaaa2000, 0xeaeb000,} }, }; const struct cas cl_2666_3ds[] = { {750, { 0xa00000, 0xb00000, 0xf00000,} }, {833, { 0xac0000, 0xac0000, 0xbc0000,} }, {937, { 0xab0000, 0xab0000, 0xaf0000,} }, {1071, { 0xaa4000, 0xaac000, 0xaac000,} }, {1250, { 0xaa0000, 0xaaa000, 0xaaa000,} }, }; const struct cas cl_2400_3ds[] = { {833, { 0xe00000, 0xe40000, 0xec0000, 0xb00000} }, {937, { 0xe00000, 0xe00000, 0xea0000, 0xae0000} }, {1071, { 0xe00000, 0xe04000, 0xeac000, 0xaec000} }, {1250, { 0xe00000, 0xe00000, 0xeaa000, 0xae2000} }, }; const struct cas cl_2133_3ds[] = { {937, { 0x90000, 0xb0000, 0xf0000,} }, {1071, { 0x84000, 0xac000, 0xec000,} }, {1250, { 0x80000, 0xa2000, 0xe2000,} }, }; const struct cas cl_1866_3ds[] = { {1071, { 0, 0x4000, 0xc000,} }, {1250, { 0, 0x1000, 0x3000,} }, }; const struct cas cl_1600_3ds[] = { {1250, { 0, 0x1000, 0x3000,} }, }; const struct speed bin_3ds[] = { {cl_3200_3ds, {15000, 16250, 17140,} }, {cl_2666_3ds, {15000, 16500, 17140,} }, {cl_2400_3ds, {15000, 15830, 16670, 17140} }, {cl_2133_3ds, {15950, 16880, 17140,} }, {cl_1866_3ds, {15000, 16070, 17140,} }, {cl_1600_3ds, {15000, 16250, 17500,} }, }; const struct speed *bin; int size; unsigned int taamin_max, tck_max; if (taamin_ps > ((package_3ds != 0) ? 21500 : 18000)) { ERROR("taamin_ps %u invalid\n", taamin_ps); return 0; } if (package_3ds != 0) { bin = bin_3ds; size = ARRAY_SIZE(bin_3ds); taamin_max = 1250; tck_max = 1500; } else { bin = bin_0; size = ARRAY_SIZE(bin_0); taamin_max = 1500; tck_max = 1600; } if (mclk_ps < 625 || mclk_ps > tck_max) { ERROR("mclk %u invalid\n", mclk_ps); return 0; } for (i = 0; i < size; i++) { if (bin[i].cl[0].tckmin_ps >= tckmin_ps) { break; } } if (i >= size) { ERROR("speed bin not found\n"); return 0; } if (bin[i].cl[0].tckmin_ps > tckmin_ps && i > 0) { i--; } for (j = 0; j < 4; j++) { if ((bin[i].taamin_ps[j] == 0) || bin[i].taamin_ps[j] >= taamin_ps) { break; } } if (j >= 4) { ERROR("taamin_ps out of range.\n"); return 0; } if ((bin[i].taamin_ps[j] == 0) || (bin[i].taamin_ps[j] > taamin_ps && j > 0)) { j--; } for (k = 0; bin[i].cl[k].tckmin_ps < mclk_ps && bin[i].cl[k].tckmin_ps < taamin_max; k++) ; if (bin[i].cl[k].tckmin_ps > mclk_ps && k > 0) { k--; } debug("Skip CL mask for this speed 0x%x\n", bin[i].cl[k].caslat[j]); return bin[i].cl[k].caslat[j]; } int compute_ddrc(const unsigned long clk, const struct memctl_opt *popts, const struct ddr_conf *conf, struct ddr_cfg_regs *regs, const struct dimm_params *pdimm, unsigned int ip_rev) { unsigned int cas_latency; unsigned int caslat_skip; unsigned int additive_latency; const unsigned int mclk_ps = get_memory_clk_ps(clk); int i; zeromem(regs, sizeof(struct ddr_cfg_regs)); if (mclk_ps < pdimm->tckmin_x_ps) { ERROR("DDR Clk: MCLK cycle is %u ps.\n", mclk_ps); ERROR("DDR Clk is faster than DIMM can support.\n"); } /* calculate cas latency, override first */ cas_latency = (popts->caslat_override != 0) ? popts->caslat_override_value : (pdimm->taa_ps + mclk_ps - 1) / mclk_ps; /* skip unsupported caslat based on speed bin */ caslat_skip = skip_caslat(pdimm->tckmin_x_ps, pdimm->taa_ps, mclk_ps, pdimm->package_3ds); debug("Skip caslat 0x%x\n", caslat_skip); /* Check if DIMM supports the cas latency */ i = 24; while (((pdimm->caslat_x & ~caslat_skip & (1 << cas_latency)) == 0) && (i-- > 0)) { cas_latency++; } if (i <= 0) { ERROR("Failed to find a proper cas latency\n"); return -EINVAL; } /* Verify cas latency does not exceed 18ns for DDR4 */ if (cas_latency * mclk_ps > 18000) { ERROR("cas latency is too large %d\n", cas_latency); return -EINVAL; } additive_latency = (popts->addt_lat_override != 0) ? popts->addt_lat_override_value : 0; cal_ddr_csn_bnds(regs, popts, conf, pdimm); cal_ddr_sdram_cfg(clk, regs, popts, pdimm, ip_rev); cal_ddr_sdram_rcw(clk, regs, popts, pdimm); cal_timing_cfg(clk, regs, popts, pdimm, conf, cas_latency, additive_latency); cal_ddr_dq_mapping(regs, pdimm); if (ip_rev >= 0x50500) { cal_ddr_addr_dec(regs); } cal_ddr_sdram_mode(clk, regs, popts, conf, pdimm, cas_latency, additive_latency, ip_rev); cal_ddr_eor(regs, popts); cal_ddr_data_init(regs); cal_ddr_sdram_interval(clk, regs, popts, pdimm); cal_ddr_zq_cntl(regs); cal_ddr_sr_cntr(regs, popts); return 0; }