/* * Copyright (c) 2019-2020, MediaTek Inc. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* common headers */ #include #include #include #include #include #include /* mediatek platform specific headers */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Local power state for power domains in Run state. */ #define MTK_LOCAL_STATE_RUN 0 /* Local power state for retention. */ #define MTK_LOCAL_STATE_RET 1 /* Local power state for OFF/power-down. */ #define MTK_LOCAL_STATE_OFF 2 #if PSCI_EXTENDED_STATE_ID /* * Macros used to parse state information from State-ID if it is using the * recommended encoding for State-ID. */ #define MTK_LOCAL_PSTATE_WIDTH 4 #define MTK_LOCAL_PSTATE_MASK ((1 << MTK_LOCAL_PSTATE_WIDTH) - 1) /* Macros to construct the composite power state */ /* Make composite power state parameter till power level 0 */ #define mtk_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type) \ (((lvl0_state) << PSTATE_ID_SHIFT) | ((type) << PSTATE_TYPE_SHIFT)) #else /* !PSCI_EXTENDED_STATE_ID */ #define mtk_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type) \ (((lvl0_state) << PSTATE_ID_SHIFT) | \ ((pwr_lvl) << PSTATE_PWR_LVL_SHIFT) | \ ((type) << PSTATE_TYPE_SHIFT)) #endif /* PSCI_EXTENDED_STATE_ID */ /* Make composite power state parameter till power level 1 */ #define mtk_make_pwrstate_lvl1(lvl1_state, lvl0_state, pwr_lvl, type) \ (((lvl1_state) << MTK_LOCAL_PSTATE_WIDTH) | \ mtk_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type)) /* Make composite power state parameter till power level 2 */ #define mtk_make_pwrstate_lvl2( \ lvl2_state, lvl1_state, lvl0_state, pwr_lvl, type) \ (((lvl2_state) << (MTK_LOCAL_PSTATE_WIDTH * 2)) | \ mtk_make_pwrstate_lvl1(lvl1_state, lvl0_state, pwr_lvl, type)) #define MTK_PWR_LVL0 0 #define MTK_PWR_LVL1 1 #define MTK_PWR_LVL2 2 /* Macros to read the MTK power domain state */ #define MTK_CORE_PWR_STATE(state) (state)->pwr_domain_state[MTK_PWR_LVL0] #define MTK_CLUSTER_PWR_STATE(state) (state)->pwr_domain_state[MTK_PWR_LVL1] #define MTK_SYSTEM_PWR_STATE(state) ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) ? \ (state)->pwr_domain_state[MTK_PWR_LVL2] : 0) #if PSCI_EXTENDED_STATE_ID /* * The table storing the valid idle power states. Ensure that the * array entries are populated in ascending order of state-id to * enable us to use binary search during power state validation. * The table must be terminated by a NULL entry. */ const unsigned int mtk_pm_idle_states[] = { /* State-id - 0x001 */ mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RET, MTK_PWR_LVL0, PSTATE_TYPE_STANDBY), /* State-id - 0x002 */ mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF, MTK_PWR_LVL0, PSTATE_TYPE_POWERDOWN), /* State-id - 0x022 */ mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF, MTK_PWR_LVL1, PSTATE_TYPE_POWERDOWN), #if PLAT_MAX_PWR_LVL > MTK_PWR_LVL1 /* State-id - 0x222 */ mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF, MTK_PWR_LVL2, PSTATE_TYPE_POWERDOWN), #endif 0, }; #endif #define CPU_IDX(cluster, cpu) ((cluster << 2) + cpu) #define ON true #define OFF false /* Pause MCDI when CPU hotplug */ static bool HP_SSPM_PAUSE; /* CPU Hotplug by SSPM */ static bool HP_SSPM_CTRL = true; /* Turn off cluster when CPU hotplug off */ static bool HP_CLUSTER_OFF = true; /* Turn off cluster when CPU MCDI off */ static bool MCDI_C2 = true; /* Enable MCDI */ static bool MCDI_SSPM = true; static uintptr_t secure_entrypoint; static void mp1_L2_desel_config(void) { mmio_write_64(MCUCFG_BASE + 0x2200, 0x2092c820); dsb(); } static bool clst_single_pwr(int cluster, int cpu) { uint32_t cpu_mask[2] = {0x00001e00, 0x000f0000}; uint32_t cpu_pwr_bit[] = {9, 10, 11, 12, 16, 17, 18, 19}; int my_idx = (cluster << 2) + cpu; uint32_t pwr_stat = mmio_read_32(0x10006180); return !(pwr_stat & (cpu_mask[cluster] & ~BIT(cpu_pwr_bit[my_idx]))); } static bool clst_single_on(int cluster, int cpu) { uint32_t cpu_mask[2] = {0x0f, 0xf0}; int my_idx = (cluster << 2) + cpu; uint32_t on_stat = mcdi_avail_cpu_mask_read(); return !(on_stat & (cpu_mask[cluster] & ~BIT(my_idx))); } static void plat_cpu_pwrdwn_common(void) { /* Prevent interrupts from spuriously waking up this cpu */ mt_gic_rdistif_save(); mt_gic_cpuif_disable(); } static void plat_cpu_pwron_common(void) { /* Enable the gic cpu interface */ mt_gic_cpuif_enable(); mt_gic_rdistif_init(); mt_gic_rdistif_restore(); } static void plat_cluster_pwrdwn_common(uint64_t mpidr, int cluster) { if (cluster > 0) mt_gic_sync_dcm_enable(); /* Disable coherency */ plat_mtk_cci_disable(); disable_scu(mpidr); } static void plat_cluster_pwron_common(uint64_t mpidr, int cluster) { if (cluster > 0) { l2c_parity_check_setup(); circular_buffer_setup(); mp1_L2_desel_config(); mt_gic_sync_dcm_disable(); } /* Enable coherency */ enable_scu(mpidr); plat_mtk_cci_enable(); /* Enable big core dcm */ plat_dcm_restore_cluster_on(mpidr); /* Enable rgu dcm */ plat_dcm_rgu_enable(); } static void plat_cpu_standby(plat_local_state_t cpu_state) { u_register_t scr; scr = read_scr_el3(); write_scr_el3(scr | SCR_IRQ_BIT | SCR_FIQ_BIT); isb(); dsb(); wfi(); write_scr_el3(scr); } static void mcdi_ctrl_before_hotplug_on(int cluster, int cpu) { if (!HP_SSPM_CTRL && HP_SSPM_PAUSE && MCDI_SSPM) { mcdi_pause_clr(cluster, CPU_IDX(cluster, cpu), OFF); mcdi_pause_set(cluster, CPU_IDX(cluster, cpu), ON); } } static void mcdi_ctrl_before_hotplug_off(int cluster, int cpu, bool cluster_off) { if (!HP_SSPM_CTRL && HP_SSPM_PAUSE && MCDI_SSPM) mcdi_pause_set(cluster_off ? cluster : -1, CPU_IDX(cluster, cpu), OFF); } static void mcdi_ctrl_cluster_cpu_off(int cluster, int cpu, bool cluster_off) { if (MCDI_SSPM) { sspm_set_bootaddr(secure_entrypoint); sspm_standbywfi_irq_enable(CPU_IDX(cluster, cpu)); if (cluster_off) sspm_cluster_pwr_off_notify(cluster); else sspm_cluster_pwr_on_notify(cluster); } } static void mcdi_ctrl_suspend(void) { if (MCDI_SSPM) mcdi_pause(); } static void mcdi_ctrl_resume(void) { if (MCDI_SSPM) mcdi_unpause(); } static void hotplug_ctrl_cluster_on(int cluster, int cpu) { if (HP_SSPM_CTRL && MCDI_SSPM) { mcdi_hotplug_clr(cluster, CPU_IDX(cluster, cpu), OFF); mcdi_hotplug_set(cluster, -1, ON); mcdi_hotplug_wait_ack(cluster, -1, ON); } else { /* power on cluster */ if (!spm_get_cluster_powerstate(cluster)) spm_poweron_cluster(cluster); } } static void hotplug_ctrl_cpu_on(int cluster, int cpu) { if (HP_SSPM_CTRL && MCDI_SSPM) mcdi_hotplug_set(cluster, CPU_IDX(cluster, cpu), ON); else spm_poweron_cpu(cluster, cpu); } static void hotplug_ctrl_cpu_on_finish(int cluster, int cpu) { spm_disable_cpu_auto_off(cluster, cpu); if (HP_SSPM_CTRL && MCDI_SSPM) mcdi_hotplug_clr(cluster, CPU_IDX(cluster, cpu), ON); else if (HP_SSPM_PAUSE && MCDI_SSPM) mcdi_pause_clr(cluster, CPU_IDX(cluster, cpu), ON); mcdi_avail_cpu_mask_set(BIT(CPU_IDX(cluster, cpu))); } static void hotplug_ctrl_cluster_cpu_off(int cluster, int cpu, bool cluster_off) { mcdi_avail_cpu_mask_clr(BIT(CPU_IDX(cluster, cpu))); if (HP_SSPM_CTRL && MCDI_SSPM) { mcdi_hotplug_set(cluster_off ? cluster : -1, CPU_IDX(cluster, cpu), OFF); } else { spm_enable_cpu_auto_off(cluster, cpu); if (cluster_off) spm_enable_cluster_auto_off(cluster); spm_set_cpu_power_off(cluster, cpu); } } static int plat_mtk_power_domain_on(unsigned long mpidr) { int cpu = MPIDR_AFFLVL0_VAL(mpidr); int cluster = MPIDR_AFFLVL1_VAL(mpidr); int clst_pwr = spm_get_cluster_powerstate(cluster); unsigned int i; mcdi_ctrl_before_hotplug_on(cluster, cpu); hotplug_ctrl_cluster_on(cluster, cpu); if (clst_pwr == 0) { /* init cpu reset arch as AARCH64 of cluster */ for (i = 0; i < PLATFORM_MAX_CPUS_PER_CLUSTER; i++) { mcucfg_init_archstate(cluster, i, 1); mcucfg_set_bootaddr(cluster, i, secure_entrypoint); } } hotplug_ctrl_cpu_on(cluster, cpu); return PSCI_E_SUCCESS; } static void plat_mtk_power_domain_off(const psci_power_state_t *state) { uint64_t mpidr = read_mpidr(); int cpu = MPIDR_AFFLVL0_VAL(mpidr); int cluster = MPIDR_AFFLVL1_VAL(mpidr); const plat_local_state_t *pds = state->pwr_domain_state; bool afflvl1 = (pds[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF); bool cluster_off = (HP_CLUSTER_OFF && afflvl1 && clst_single_on(cluster, cpu)); plat_cpu_pwrdwn_common(); if (cluster_off) plat_cluster_pwrdwn_common(mpidr, cluster); mcdi_ctrl_before_hotplug_off(cluster, cpu, cluster_off); hotplug_ctrl_cluster_cpu_off(cluster, cpu, cluster_off); } static void plat_mtk_power_domain_on_finish(const psci_power_state_t *state) { uint64_t mpidr = read_mpidr(); int cpu = MPIDR_AFFLVL0_VAL(mpidr); int cluster = MPIDR_AFFLVL1_VAL(mpidr); const plat_local_state_t *pds = state->pwr_domain_state; bool afflvl1 = (pds[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF); if (afflvl1) plat_cluster_pwron_common(mpidr, cluster); plat_cpu_pwron_common(); hotplug_ctrl_cpu_on_finish(cluster, cpu); } static void plat_mtk_power_domain_suspend(const psci_power_state_t *state) { uint64_t mpidr = read_mpidr(); int cpu = MPIDR_AFFLVL0_VAL(mpidr); int cluster = MPIDR_AFFLVL1_VAL(mpidr); const plat_local_state_t *pds = state->pwr_domain_state; bool afflvl1 = (pds[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF); bool afflvl2 = (pds[MPIDR_AFFLVL2] == MTK_LOCAL_STATE_OFF); bool cluster_off = MCDI_C2 && afflvl1 && clst_single_pwr(cluster, cpu); plat_cpu_pwrdwn_common(); plat_dcm_mcsi_a_backup(); if (cluster_off || afflvl2) plat_cluster_pwrdwn_common(mpidr, cluster); if (afflvl2) { spm_data_t spm_d = { .cmd = SPM_SUSPEND }; uint32_t *d = (uint32_t *)&spm_d; uint32_t l = sizeof(spm_d) / sizeof(uint32_t); mcdi_ctrl_suspend(); spm_set_bootaddr(secure_entrypoint); if (MCDI_SSPM) sspm_ipi_send_non_blocking(IPI_ID_SUSPEND, d); spm_system_suspend(); if (MCDI_SSPM) while (sspm_ipi_recv_non_blocking(IPI_ID_SUSPEND, d, l)) ; mt_gic_distif_save(); } else { mcdi_ctrl_cluster_cpu_off(cluster, cpu, cluster_off); } } static void plat_mtk_power_domain_suspend_finish(const psci_power_state_t *state) { uint64_t mpidr = read_mpidr(); int cluster = MPIDR_AFFLVL1_VAL(mpidr); const plat_local_state_t *pds = state->pwr_domain_state; bool afflvl2 = (pds[MPIDR_AFFLVL2] == MTK_LOCAL_STATE_OFF); if (afflvl2) { spm_data_t spm_d = { .cmd = SPM_RESUME }; uint32_t *d = (uint32_t *)&spm_d; uint32_t l = sizeof(spm_d) / sizeof(uint32_t); mt_gic_init(); mt_gic_distif_restore(); mt_gic_rdistif_restore(); mmio_write_32(EMI_WFIFO, 0xf); if (MCDI_SSPM) sspm_ipi_send_non_blocking(IPI_ID_SUSPEND, d); spm_system_suspend_finish(); if (MCDI_SSPM) while (sspm_ipi_recv_non_blocking(IPI_ID_SUSPEND, d, l)) ; mcdi_ctrl_resume(); } else { plat_cpu_pwron_common(); } plat_cluster_pwron_common(mpidr, cluster); plat_dcm_mcsi_a_restore(); } #if PSCI_EXTENDED_STATE_ID static int plat_mtk_validate_power_state(unsigned int power_state, psci_power_state_t *req_state) { unsigned int state_id; int i; assert(req_state); if (!MCDI_SSPM) return PSCI_E_INVALID_PARAMS; /* * Currently we are using a linear search for finding the matching * entry in the idle power state array. This can be made a binary * search if the number of entries justify the additional complexity. */ for (i = 0; !!mtk_pm_idle_states[i]; i++) { if (power_state == mtk_pm_idle_states[i]) break; } /* Return error if entry not found in the idle state array */ if (!mtk_pm_idle_states[i]) return PSCI_E_INVALID_PARAMS; i = 0; state_id = psci_get_pstate_id(power_state); /* Parse the State ID and populate the state info parameter */ while (state_id) { req_state->pwr_domain_state[i++] = state_id & MTK_LOCAL_PSTATE_MASK; state_id >>= MTK_LOCAL_PSTATE_WIDTH; } return PSCI_E_SUCCESS; } #else /* if !PSCI_EXTENDED_STATE_ID */ static int plat_mtk_validate_power_state(unsigned int power_state, psci_power_state_t *req_state) { int pstate = psci_get_pstate_type(power_state); int pwr_lvl = psci_get_pstate_pwrlvl(power_state); int i; assert(req_state); if (pwr_lvl > PLAT_MAX_PWR_LVL) return PSCI_E_INVALID_PARAMS; /* Sanity check the requested state */ if (pstate == PSTATE_TYPE_STANDBY) { /* * It's possible to enter standby only on power level 0 * Ignore any other power level. */ if (pwr_lvl != 0) return PSCI_E_INVALID_PARAMS; req_state->pwr_domain_state[MTK_PWR_LVL0] = MTK_LOCAL_STATE_RET; } else if (!MCDI_SSPM) { return PSCI_E_INVALID_PARAMS; } else { for (i = 0; i <= pwr_lvl; i++) req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF; } return PSCI_E_SUCCESS; } #endif /* PSCI_EXTENDED_STATE_ID */ /******************************************************************************* * MTK handlers to shutdown/reboot the system ******************************************************************************/ static void __dead2 plat_mtk_system_off(void) { INFO("MTK System Off\n"); rtc_power_off_sequence(); wk_pmic_enable_sdn_delay(); pmic_power_off(); wfi(); ERROR("MTK System Off: operation not handled.\n"); panic(); } static void __dead2 plat_mtk_system_reset(void) { struct bl_aux_gpio_info *gpio_reset = plat_get_mtk_gpio_reset(); INFO("MTK System Reset\n"); mt_set_gpio_out(gpio_reset->index, gpio_reset->polarity); wfi(); ERROR("MTK System Reset: operation not handled.\n"); panic(); } static void plat_mtk_get_sys_suspend_power_state(psci_power_state_t *req_state) { assert(PLAT_MAX_PWR_LVL >= 2); for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++) req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF; } /******************************************************************************* * MTK_platform handler called when an affinity instance is about to be turned * on. The level and mpidr determine the affinity instance. ******************************************************************************/ static const plat_psci_ops_t plat_plat_pm_ops = { .cpu_standby = plat_cpu_standby, .pwr_domain_on = plat_mtk_power_domain_on, .pwr_domain_on_finish = plat_mtk_power_domain_on_finish, .pwr_domain_off = plat_mtk_power_domain_off, .pwr_domain_suspend = plat_mtk_power_domain_suspend, .pwr_domain_suspend_finish = plat_mtk_power_domain_suspend_finish, .system_off = plat_mtk_system_off, .system_reset = plat_mtk_system_reset, .validate_power_state = plat_mtk_validate_power_state, .get_sys_suspend_power_state = plat_mtk_get_sys_suspend_power_state }; int plat_setup_psci_ops(uintptr_t sec_entrypoint, const plat_psci_ops_t **psci_ops) { unsigned int i; *psci_ops = &plat_plat_pm_ops; secure_entrypoint = sec_entrypoint; /* Init cpu reset arch as AARCH64 of cluster 0 */ for (i = 0; i < PLATFORM_MAX_CPUS_PER_CLUSTER; i++) { mcucfg_init_archstate(0, i, 1); mcucfg_set_bootaddr(0, i, secure_entrypoint); } if (!check_mcdi_ctl_stat()) { HP_SSPM_CTRL = false; MCDI_SSPM = false; } return 0; }