/* * Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * Top-level SMC handler for Versal power management calls and * IPI setup functions for communication with PMC. */ #include #include #include #include #include #include "pm_api_sys.h" #include "pm_client.h" #include "pm_ipi.h" #include #define XSCUGIC_SGIR_EL1_INITID_SHIFT 24U #define INVALID_SGI 0xFFU DEFINE_RENAME_SYSREG_RW_FUNCS(icc_asgi1r_el1, S3_0_C12_C11_6) /* pm_up = true - UP, pm_up = false - DOWN */ static bool pm_up; static unsigned int sgi = (unsigned int)INVALID_SGI; static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { unsigned int cpu; unsigned int reg; (void)plat_ic_acknowledge_interrupt(); cpu = plat_my_core_pos() + 1U; if ((unsigned int)sgi != (unsigned int)INVALID_SGI) { reg = (cpu | ((unsigned int)sgi << (unsigned int)XSCUGIC_SGIR_EL1_INITID_SHIFT)); write_icc_asgi1r_el1(reg); } /* Clear FIQ */ plat_ic_end_of_interrupt(id); return 0; } /** * pm_register_sgi() - PM register the IPI interrupt * * @sgi - SGI number to be used for communication. * @return On success, the initialization function must return 0. * Any other return value will cause the framework to ignore * the service * * Update the SGI number to be used. * */ int pm_register_sgi(unsigned int sgi_num) { if ((unsigned int)sgi != (unsigned int)INVALID_SGI) { return -EBUSY; } if (sgi_num >= GICV3_MAX_SGI_TARGETS) { return -EINVAL; } sgi = (unsigned int)sgi_num; return 0; } /** * pm_setup() - PM service setup * * @return On success, the initialization function must return 0. * Any other return value will cause the framework to ignore * the service * * Initialization functions for Versal power management for * communicaton with PMC. * * Called from sip_svc_setup initialization function with the * rt_svc_init signature. */ int pm_setup(void) { int status, ret = 0; status = pm_ipi_init(primary_proc); if (status < 0) { INFO("BL31: PM Service Init Failed, Error Code %d!\n", status); ret = status; } else { pm_up = true; } /* * Enable IPI IRQ * assume the rich OS is OK to handle callback IRQs now. * Even if we were wrong, it would not enable the IRQ in * the GIC. */ pm_ipi_irq_enable(primary_proc); ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler); if (ret != 0) { WARN("BL31: registering IPI interrupt failed\n"); } return ret; } /** * eemi_for_compatibility() - EEMI calls handler for deprecated calls * * @return - If EEMI API found then, uintptr_t type address, else 0 * * Some EEMI API's use case needs to be changed in Linux driver, so they * can take advantage of common EEMI handler in TF-A. As of now the old * implementation of these APIs are required to maintain backward compatibility * until their use case in linux driver changes. */ static uintptr_t eemi_for_compatibility(uint32_t api_id, uint32_t *pm_arg, void *handle, uint32_t security_flag) { enum pm_ret_status ret; switch (api_id) { case PM_IOCTL: { uint32_t value; ret = pm_api_ioctl(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], &value, security_flag); if (ret == PM_RET_ERROR_NOTSUPPORTED) return (uintptr_t)0; SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_QUERY_DATA: { uint32_t data[PAYLOAD_ARG_CNT] = { 0 }; ret = pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], data, security_flag); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)data[0] << 32), (uint64_t)data[1] | ((uint64_t)data[2] << 32)); } case PM_FEATURE_CHECK: { uint32_t version; ret = pm_feature_check(pm_arg[0], &version, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)version << 32)); } case PM_LOAD_PDI: { ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2], security_flag); SMC_RET1(handle, (uint64_t)ret); } default: return (uintptr_t)0; } } /** * eemi_psci_debugfs_handler() - EEMI API invoked from PSCI * * These EEMI APIs performs CPU specific power management tasks. * These EEMI APIs are invoked either from PSCI or from debugfs in kernel. * These calls require CPU specific processing before sending IPI request to * Platform Management Controller. For example enable/disable CPU specific * interrupts. This requires separate handler for these calls and may not be * handled using common eemi handler */ static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, uint32_t *pm_arg, void *handle, uint32_t security_flag) { enum pm_ret_status ret; switch (api_id) { case PM_SELF_SUSPEND: ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_FORCE_POWERDOWN: ret = pm_force_powerdown(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_SUSPEND: ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_ABORT_SUSPEND: ret = pm_abort_suspend(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_SYSTEM_SHUTDOWN: ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); default: return (uintptr_t)0; } } /** * TF_A_specific_handler() - SMC handler for TF-A specific functionality * * These EEMI calls performs functionality that does not require * IPI transaction. The handler ends in TF-A and returns requested data to * kernel from TF-A */ static uintptr_t TF_A_specific_handler(uint32_t api_id, uint32_t *pm_arg, void *handle, uint32_t security_flag) { switch (api_id) { case PM_GET_CALLBACK_DATA: { uint32_t result[4] = {0}; pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag); SMC_RET2(handle, (uint64_t)result[0] | ((uint64_t)result[1] << 32), (uint64_t)result[2] | ((uint64_t)result[3] << 32)); } case PM_GET_TRUSTZONE_VERSION: SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | ((uint64_t)VERSAL_TZ_VERSION << 32)); default: return (uintptr_t)0; } } /** * eemi_handler() - Prepare EEMI payload and perform IPI transaction * * EEMI - Embedded Energy Management Interface is Xilinx proprietary protocol * to allow communication between power management controller and different * processing clusters. * * This handler prepares EEMI protocol payload received from kernel and performs * IPI transaction. */ static uintptr_t eemi_handler(uint32_t api_id, uint32_t *pm_arg, void *handle, uint32_t security_flag) { enum pm_ret_status ret; uint32_t buf[PAYLOAD_ARG_CNT] = {0}; ret = pm_handle_eemi_call(security_flag, api_id, pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], pm_arg[4], (uint64_t *)buf); /* * Two IOCTLs, to get clock name and pinctrl name of pm_query_data API * receives 5 words of respoonse from firmware. Currently linux driver can * receive only 4 words from TF-A. So, this needs to be handled separately * than other eemi calls. */ if (api_id == PM_QUERY_DATA) { if ((pm_arg[0] == XPM_QID_CLOCK_GET_NAME || pm_arg[0] == XPM_QID_PINCTRL_GET_FUNCTION_NAME) && ret == PM_RET_SUCCESS) { SMC_RET2(handle, (uint64_t)buf[0] | ((uint64_t)buf[1] << 32), (uint64_t)buf[2] | ((uint64_t)buf[3] << 32)); } } SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32), (uint64_t)buf[1] | ((uint64_t)buf[2] << 32)); } /** * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. * @smc_fid - Function Identifier * @x1 - x4 - SMC64 Arguments from kernel * x3 and x4 are Unused * @cookie - Unused * @handler - Pointer to caller's context structure * * @return - Unused * * Determines that smc_fid is valid and supported PM SMC Function ID from the * list of pm_api_ids, otherwise completes the request with * the unknown SMC Function ID * * The SMC calls for PM service are forwarded from SIP Service SMC handler * function with rt_svc_handle signature */ uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { uintptr_t ret; uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0}; uint32_t security_flag = SECURE_FLAG; uint32_t api_id; /* Handle case where PM wasn't initialized properly */ if (!pm_up) SMC_RET1(handle, SMC_UNK); /* * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as non-secure (1) * if smc called is non secure */ if (is_caller_non_secure(flags)) { security_flag = NON_SECURE_FLAG; } pm_arg[0] = (uint32_t)x1; pm_arg[1] = (uint32_t)(x1 >> 32); pm_arg[2] = (uint32_t)x2; pm_arg[3] = (uint32_t)(x2 >> 32); (void)(x3); (void)(x4); api_id = smc_fid & FUNCID_NUM_MASK; ret = eemi_for_compatibility(api_id, pm_arg, handle, security_flag); if (ret != (uintptr_t)0) return ret; ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle, flags); if (ret != (uintptr_t)0) return ret; ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag); if (ret != (uintptr_t)0) return ret; ret = eemi_handler(api_id, pm_arg, handle, security_flag); return ret; }