/* * Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved * * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Timeout for device interface reset */ #define TIMEOUT_US_1_MS 1000U /* QUADSPI registers */ #define QSPI_CR 0x00U #define QSPI_DCR 0x04U #define QSPI_SR 0x08U #define QSPI_FCR 0x0CU #define QSPI_DLR 0x10U #define QSPI_CCR 0x14U #define QSPI_AR 0x18U #define QSPI_ABR 0x1CU #define QSPI_DR 0x20U #define QSPI_PSMKR 0x24U #define QSPI_PSMAR 0x28U #define QSPI_PIR 0x2CU #define QSPI_LPTR 0x30U /* QUADSPI control register */ #define QSPI_CR_EN BIT(0) #define QSPI_CR_ABORT BIT(1) #define QSPI_CR_DMAEN BIT(2) #define QSPI_CR_TCEN BIT(3) #define QSPI_CR_SSHIFT BIT(4) #define QSPI_CR_DFM BIT(6) #define QSPI_CR_FSEL BIT(7) #define QSPI_CR_FTHRES_SHIFT 8U #define QSPI_CR_TEIE BIT(16) #define QSPI_CR_TCIE BIT(17) #define QSPI_CR_FTIE BIT(18) #define QSPI_CR_SMIE BIT(19) #define QSPI_CR_TOIE BIT(20) #define QSPI_CR_APMS BIT(22) #define QSPI_CR_PMM BIT(23) #define QSPI_CR_PRESCALER_MASK GENMASK_32(31, 24) #define QSPI_CR_PRESCALER_SHIFT 24U /* QUADSPI device configuration register */ #define QSPI_DCR_CKMODE BIT(0) #define QSPI_DCR_CSHT_MASK GENMASK_32(10, 8) #define QSPI_DCR_CSHT_SHIFT 8U #define QSPI_DCR_FSIZE_MASK GENMASK_32(20, 16) #define QSPI_DCR_FSIZE_SHIFT 16U /* QUADSPI status register */ #define QSPI_SR_TEF BIT(0) #define QSPI_SR_TCF BIT(1) #define QSPI_SR_FTF BIT(2) #define QSPI_SR_SMF BIT(3) #define QSPI_SR_TOF BIT(4) #define QSPI_SR_BUSY BIT(5) /* QUADSPI flag clear register */ #define QSPI_FCR_CTEF BIT(0) #define QSPI_FCR_CTCF BIT(1) #define QSPI_FCR_CSMF BIT(3) #define QSPI_FCR_CTOF BIT(4) /* QUADSPI communication configuration register */ #define QSPI_CCR_DDRM BIT(31) #define QSPI_CCR_DHHC BIT(30) #define QSPI_CCR_SIOO BIT(28) #define QSPI_CCR_FMODE_SHIFT 26U #define QSPI_CCR_DMODE_SHIFT 24U #define QSPI_CCR_DCYC_SHIFT 18U #define QSPI_CCR_ABSIZE_SHIFT 16U #define QSPI_CCR_ABMODE_SHIFT 14U #define QSPI_CCR_ADSIZE_SHIFT 12U #define QSPI_CCR_ADMODE_SHIFT 10U #define QSPI_CCR_IMODE_SHIFT 8U #define QSPI_CCR_IND_WRITE 0U #define QSPI_CCR_IND_READ 1U #define QSPI_CCR_MEM_MAP 3U #define QSPI_MAX_CHIP 2U #define QSPI_FIFO_TIMEOUT_US 30U #define QSPI_CMD_TIMEOUT_US 1000U #define QSPI_BUSY_TIMEOUT_US 100U #define QSPI_ABT_TIMEOUT_US 100U #define DT_QSPI_COMPAT "st,stm32f469-qspi" #define FREQ_100MHZ 100000000U struct stm32_qspi_ctrl { uintptr_t reg_base; uintptr_t mm_base; size_t mm_size; unsigned long clock_id; unsigned int reset_id; }; static struct stm32_qspi_ctrl stm32_qspi; static uintptr_t qspi_base(void) { return stm32_qspi.reg_base; } static int stm32_qspi_wait_for_not_busy(void) { uint64_t timeout = timeout_init_us(QSPI_BUSY_TIMEOUT_US); while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_BUSY) != 0U) { if (timeout_elapsed(timeout)) { ERROR("%s: busy timeout\n", __func__); return -ETIMEDOUT; } } return 0; } static int stm32_qspi_wait_cmd(const struct spi_mem_op *op) { int ret = 0; uint64_t timeout; timeout = timeout_init_us(QSPI_CMD_TIMEOUT_US); while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TCF) == 0U) { if (timeout_elapsed(timeout)) { ret = -ETIMEDOUT; break; } } if (ret == 0) { if ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TEF) != 0U) { ERROR("%s: transfer error\n", __func__); ret = -EIO; } } else { ERROR("%s: cmd timeout\n", __func__); } /* Clear flags */ mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF | QSPI_FCR_CTEF); if (ret == 0) { ret = stm32_qspi_wait_for_not_busy(); } return ret; } static void stm32_qspi_read_fifo(uint8_t *val, uintptr_t addr) { *val = mmio_read_8(addr); } static void stm32_qspi_write_fifo(uint8_t *val, uintptr_t addr) { mmio_write_8(addr, *val); } static int stm32_qspi_poll(const struct spi_mem_op *op) { void (*fifo)(uint8_t *val, uintptr_t addr); uint32_t len; uint8_t *buf; if (op->data.dir == SPI_MEM_DATA_IN) { fifo = stm32_qspi_read_fifo; } else { fifo = stm32_qspi_write_fifo; } buf = (uint8_t *)op->data.buf; for (len = op->data.nbytes; len != 0U; len--) { uint64_t timeout = timeout_init_us(QSPI_FIFO_TIMEOUT_US); while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_FTF) == 0U) { if (timeout_elapsed(timeout)) { ERROR("%s: fifo timeout\n", __func__); return -ETIMEDOUT; } } fifo(buf++, qspi_base() + QSPI_DR); } return 0; } static int stm32_qspi_mm(const struct spi_mem_op *op) { memcpy(op->data.buf, (void *)(stm32_qspi.mm_base + (size_t)op->addr.val), op->data.nbytes); return 0; } static int stm32_qspi_tx(const struct spi_mem_op *op, uint8_t mode) { if (op->data.nbytes == 0U) { return 0; } if (mode == QSPI_CCR_MEM_MAP) { return stm32_qspi_mm(op); } return stm32_qspi_poll(op); } static unsigned int stm32_qspi_get_mode(uint8_t buswidth) { if (buswidth == 4U) { return 3U; } return buswidth; } static int stm32_qspi_exec_op(const struct spi_mem_op *op) { uint64_t timeout; uint32_t ccr; size_t addr_max; uint8_t mode = QSPI_CCR_IND_WRITE; int ret; VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addr:%" PRIx64 " len:%x\n", __func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth, op->addr.val, op->data.nbytes); addr_max = op->addr.val + op->data.nbytes + 1U; if ((op->data.dir == SPI_MEM_DATA_IN) && (op->data.nbytes != 0U)) { if ((addr_max < stm32_qspi.mm_size) && (op->addr.buswidth != 0U)) { mode = QSPI_CCR_MEM_MAP; } else { mode = QSPI_CCR_IND_READ; } } if (op->data.nbytes != 0U) { mmio_write_32(qspi_base() + QSPI_DLR, op->data.nbytes - 1U); } ccr = mode << QSPI_CCR_FMODE_SHIFT; ccr |= op->cmd.opcode; ccr |= stm32_qspi_get_mode(op->cmd.buswidth) << QSPI_CCR_IMODE_SHIFT; if (op->addr.nbytes != 0U) { ccr |= (op->addr.nbytes - 1U) << QSPI_CCR_ADSIZE_SHIFT; ccr |= stm32_qspi_get_mode(op->addr.buswidth) << QSPI_CCR_ADMODE_SHIFT; } if ((op->dummy.buswidth != 0U) && (op->dummy.nbytes != 0U)) { ccr |= (op->dummy.nbytes * 8U / op->dummy.buswidth) << QSPI_CCR_DCYC_SHIFT; } if (op->data.nbytes != 0U) { ccr |= stm32_qspi_get_mode(op->data.buswidth) << QSPI_CCR_DMODE_SHIFT; } mmio_write_32(qspi_base() + QSPI_CCR, ccr); if ((op->addr.nbytes != 0U) && (mode != QSPI_CCR_MEM_MAP)) { mmio_write_32(qspi_base() + QSPI_AR, op->addr.val); } ret = stm32_qspi_tx(op, mode); /* * Abort in: * - Error case. * - Memory mapped read: prefetching must be stopped if we read the last * byte of device (device size - fifo size). If device size is not * known then prefetching is always stopped. */ if ((ret != 0) || (mode == QSPI_CCR_MEM_MAP)) { goto abort; } /* Wait end of TX in indirect mode */ ret = stm32_qspi_wait_cmd(op); if (ret != 0) { goto abort; } return 0; abort: mmio_setbits_32(qspi_base() + QSPI_CR, QSPI_CR_ABORT); /* Wait clear of abort bit by hardware */ timeout = timeout_init_us(QSPI_ABT_TIMEOUT_US); while ((mmio_read_32(qspi_base() + QSPI_CR) & QSPI_CR_ABORT) != 0U) { if (timeout_elapsed(timeout)) { ret = -ETIMEDOUT; break; } } mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF); if (ret != 0) { ERROR("%s: exec op error\n", __func__); } return ret; } static int stm32_qspi_claim_bus(unsigned int cs) { uint32_t cr; if (cs >= QSPI_MAX_CHIP) { return -ENODEV; } /* Set chip select and enable the controller */ cr = QSPI_CR_EN; if (cs == 1U) { cr |= QSPI_CR_FSEL; } mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_FSEL, cr); return 0; } static void stm32_qspi_release_bus(void) { mmio_clrbits_32(qspi_base() + QSPI_CR, QSPI_CR_EN); } static int stm32_qspi_set_speed(unsigned int hz) { unsigned long qspi_clk = clk_get_rate(stm32_qspi.clock_id); uint32_t prescaler = UINT8_MAX; uint32_t csht; int ret; if (qspi_clk == 0U) { return -EINVAL; } if (hz > 0U) { prescaler = div_round_up(qspi_clk, hz) - 1U; if (prescaler > UINT8_MAX) { prescaler = UINT8_MAX; } } csht = div_round_up((5U * qspi_clk) / (prescaler + 1U), FREQ_100MHZ); csht = ((csht - 1U) << QSPI_DCR_CSHT_SHIFT) & QSPI_DCR_CSHT_MASK; ret = stm32_qspi_wait_for_not_busy(); if (ret != 0) { return ret; } mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_PRESCALER_MASK, prescaler << QSPI_CR_PRESCALER_SHIFT); mmio_clrsetbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CSHT_MASK, csht); VERBOSE("%s: speed=%lu\n", __func__, qspi_clk / (prescaler + 1U)); return 0; } static int stm32_qspi_set_mode(unsigned int mode) { int ret; ret = stm32_qspi_wait_for_not_busy(); if (ret != 0) { return ret; } if ((mode & SPI_CS_HIGH) != 0U) { return -ENODEV; } if (((mode & SPI_CPHA) != 0U) && ((mode & SPI_CPOL) != 0U)) { mmio_setbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE); } else if (((mode & SPI_CPHA) == 0U) && ((mode & SPI_CPOL) == 0U)) { mmio_clrbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE); } else { return -ENODEV; } VERBOSE("%s: mode=0x%x\n", __func__, mode); if ((mode & SPI_RX_QUAD) != 0U) { VERBOSE("rx: quad\n"); } else if ((mode & SPI_RX_DUAL) != 0U) { VERBOSE("rx: dual\n"); } else { VERBOSE("rx: single\n"); } if ((mode & SPI_TX_QUAD) != 0U) { VERBOSE("tx: quad\n"); } else if ((mode & SPI_TX_DUAL) != 0U) { VERBOSE("tx: dual\n"); } else { VERBOSE("tx: single\n"); } return 0; } static const struct spi_bus_ops stm32_qspi_bus_ops = { .claim_bus = stm32_qspi_claim_bus, .release_bus = stm32_qspi_release_bus, .set_speed = stm32_qspi_set_speed, .set_mode = stm32_qspi_set_mode, .exec_op = stm32_qspi_exec_op, }; int stm32_qspi_init(void) { size_t size; int qspi_node; struct dt_node_info info; void *fdt = NULL; int ret; if (fdt_get_address(&fdt) == 0) { return -FDT_ERR_NOTFOUND; } qspi_node = dt_get_node(&info, -1, DT_QSPI_COMPAT); if (qspi_node < 0) { ERROR("No QSPI ctrl found\n"); return -FDT_ERR_NOTFOUND; } if (info.status == DT_DISABLED) { return -FDT_ERR_NOTFOUND; } ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi", &stm32_qspi.reg_base, &size); if (ret != 0) { return ret; } ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi_mm", &stm32_qspi.mm_base, &stm32_qspi.mm_size); if (ret != 0) { return ret; } if (dt_set_pinctrl_config(qspi_node) != 0) { return -FDT_ERR_BADVALUE; } if ((info.clock < 0) || (info.reset < 0)) { return -FDT_ERR_BADVALUE; } stm32_qspi.clock_id = (unsigned long)info.clock; stm32_qspi.reset_id = (unsigned int)info.reset; clk_enable(stm32_qspi.clock_id); ret = stm32mp_reset_assert(stm32_qspi.reset_id, TIMEOUT_US_1_MS); if (ret != 0) { panic(); } ret = stm32mp_reset_deassert(stm32_qspi.reset_id, TIMEOUT_US_1_MS); if (ret != 0) { panic(); } mmio_write_32(qspi_base() + QSPI_CR, QSPI_CR_SSHIFT); mmio_write_32(qspi_base() + QSPI_DCR, QSPI_DCR_FSIZE_MASK); return spi_mem_init_slave(fdt, qspi_node, &stm32_qspi_bus_ops); };