/* * Copyright (c) 2015-2022, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include /* Internal layout of the 32bit OTP word board_id */ #define BOARD_ID_BOARD_NB_MASK GENMASK(31, 16) #define BOARD_ID_BOARD_NB_SHIFT 16 #define BOARD_ID_VARCPN_MASK GENMASK(15, 12) #define BOARD_ID_VARCPN_SHIFT 12 #define BOARD_ID_REVISION_MASK GENMASK(11, 8) #define BOARD_ID_REVISION_SHIFT 8 #define BOARD_ID_VARFG_MASK GENMASK(7, 4) #define BOARD_ID_VARFG_SHIFT 4 #define BOARD_ID_BOM_MASK GENMASK(3, 0) #define BOARD_ID2NB(_id) (((_id) & BOARD_ID_BOARD_NB_MASK) >> \ BOARD_ID_BOARD_NB_SHIFT) #define BOARD_ID2VARCPN(_id) (((_id) & BOARD_ID_VARCPN_MASK) >> \ BOARD_ID_VARCPN_SHIFT) #define BOARD_ID2REV(_id) (((_id) & BOARD_ID_REVISION_MASK) >> \ BOARD_ID_REVISION_SHIFT) #define BOARD_ID2VARFG(_id) (((_id) & BOARD_ID_VARFG_MASK) >> \ BOARD_ID_VARFG_SHIFT) #define BOARD_ID2BOM(_id) ((_id) & BOARD_ID_BOM_MASK) #define TAMP_BOOT_MODE_BACKUP_REG_ID U(20) #define TAMP_BOOT_MODE_ITF_MASK U(0x0000FF00) #define TAMP_BOOT_MODE_ITF_SHIFT 8 #define TAMP_BOOT_COUNTER_REG_ID U(21) #if defined(IMAGE_BL2) #define MAP_SEC_SYSRAM MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \ STM32MP_SYSRAM_SIZE, \ MT_MEMORY | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #elif defined(IMAGE_BL32) #define MAP_SEC_SYSRAM MAP_REGION_FLAT(STM32MP_SEC_SYSRAM_BASE, \ STM32MP_SEC_SYSRAM_SIZE, \ MT_MEMORY | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) /* Non-secure SYSRAM is used a uncached memory for SCMI message transfer */ #define MAP_NS_SYSRAM MAP_REGION_FLAT(STM32MP_NS_SYSRAM_BASE, \ STM32MP_NS_SYSRAM_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_NS | \ MT_EXECUTE_NEVER) #endif #define MAP_DEVICE1 MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \ STM32MP1_DEVICE1_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #define MAP_DEVICE2 MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \ STM32MP1_DEVICE2_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #if defined(IMAGE_BL2) static const mmap_region_t stm32mp1_mmap[] = { MAP_SEC_SYSRAM, MAP_DEVICE1, #if STM32MP_RAW_NAND MAP_DEVICE2, #endif {0} }; #endif #if defined(IMAGE_BL32) static const mmap_region_t stm32mp1_mmap[] = { MAP_SEC_SYSRAM, MAP_NS_SYSRAM, MAP_DEVICE1, MAP_DEVICE2, {0} }; #endif void configure_mmu(void) { mmap_add(stm32mp1_mmap); init_xlat_tables(); enable_mmu_svc_mon(0); } uintptr_t stm32_get_gpio_bank_base(unsigned int bank) { if (bank == GPIO_BANK_Z) { return GPIOZ_BASE; } assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K); return GPIOA_BASE + (bank * GPIO_BANK_OFFSET); } uint32_t stm32_get_gpio_bank_offset(unsigned int bank) { if (bank == GPIO_BANK_Z) { return 0; } assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K); return bank * GPIO_BANK_OFFSET; } bool stm32_gpio_is_secure_at_reset(unsigned int bank) { if (bank == GPIO_BANK_Z) { return true; } return false; } unsigned long stm32_get_gpio_bank_clock(unsigned int bank) { if (bank == GPIO_BANK_Z) { return GPIOZ; } assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K); return GPIOA + (bank - GPIO_BANK_A); } int stm32_get_gpio_bank_pinctrl_node(void *fdt, unsigned int bank) { switch (bank) { case GPIO_BANK_A: case GPIO_BANK_B: case GPIO_BANK_C: case GPIO_BANK_D: case GPIO_BANK_E: case GPIO_BANK_F: case GPIO_BANK_G: case GPIO_BANK_H: case GPIO_BANK_I: case GPIO_BANK_J: case GPIO_BANK_K: return fdt_path_offset(fdt, "/soc/pin-controller"); case GPIO_BANK_Z: return fdt_path_offset(fdt, "/soc/pin-controller-z"); default: panic(); } } #if STM32MP_UART_PROGRAMMER || !defined(IMAGE_BL2) /* * UART Management */ static const uintptr_t stm32mp1_uart_addresses[8] = { USART1_BASE, USART2_BASE, USART3_BASE, UART4_BASE, UART5_BASE, USART6_BASE, UART7_BASE, UART8_BASE, }; uintptr_t get_uart_address(uint32_t instance_nb) { if ((instance_nb == 0U) || (instance_nb > ARRAY_SIZE(stm32mp1_uart_addresses))) { return 0U; } return stm32mp1_uart_addresses[instance_nb - 1U]; } #endif #if STM32MP_USB_PROGRAMMER struct gpio_bank_pin_list { uint32_t bank; uint32_t pin; }; static const struct gpio_bank_pin_list gpio_list[] = { { /* USART2_RX: GPIOA3 */ .bank = 0U, .pin = 3U, }, { /* USART3_RX: GPIOB12 */ .bank = 1U, .pin = 12U, }, { /* UART4_RX: GPIOB2 */ .bank = 1U, .pin = 2U, }, { /* UART5_RX: GPIOB4 */ .bank = 1U, .pin = 5U, }, { /* USART6_RX: GPIOC7 */ .bank = 2U, .pin = 7U, }, { /* UART7_RX: GPIOF6 */ .bank = 5U, .pin = 6U, }, { /* UART8_RX: GPIOE0 */ .bank = 4U, .pin = 0U, }, }; void stm32mp1_deconfigure_uart_pins(void) { size_t i; for (i = 0U; i < ARRAY_SIZE(gpio_list); i++) { set_gpio_reset_cfg(gpio_list[i].bank, gpio_list[i].pin); } } #endif uint32_t stm32mp_get_chip_version(void) { uint32_t version = 0U; if (stm32mp1_dbgmcu_get_chip_version(&version) < 0) { INFO("Cannot get CPU version, debug disabled\n"); return 0U; } return version; } uint32_t stm32mp_get_chip_dev_id(void) { uint32_t dev_id; if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) { INFO("Use default chip ID, debug disabled\n"); dev_id = STM32MP1_CHIP_ID; } return dev_id; } static uint32_t get_part_number(void) { static uint32_t part_number; if (part_number != 0U) { return part_number; } if (bsec_shadow_read_otp(&part_number, PART_NUMBER_OTP) != BSEC_OK) { panic(); } part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >> PART_NUMBER_OTP_PART_SHIFT; part_number |= stm32mp_get_chip_dev_id() << 16; return part_number; } static uint32_t get_cpu_package(void) { uint32_t package; if (bsec_shadow_read_otp(&package, PACKAGE_OTP) != BSEC_OK) { panic(); } package = (package & PACKAGE_OTP_PKG_MASK) >> PACKAGE_OTP_PKG_SHIFT; return package; } void stm32mp_get_soc_name(char name[STM32_SOC_NAME_SIZE]) { char *cpu_s, *cpu_r, *pkg; /* MPUs Part Numbers */ switch (get_part_number()) { case STM32MP157C_PART_NB: cpu_s = "157C"; break; case STM32MP157A_PART_NB: cpu_s = "157A"; break; case STM32MP153C_PART_NB: cpu_s = "153C"; break; case STM32MP153A_PART_NB: cpu_s = "153A"; break; case STM32MP151C_PART_NB: cpu_s = "151C"; break; case STM32MP151A_PART_NB: cpu_s = "151A"; break; case STM32MP157F_PART_NB: cpu_s = "157F"; break; case STM32MP157D_PART_NB: cpu_s = "157D"; break; case STM32MP153F_PART_NB: cpu_s = "153F"; break; case STM32MP153D_PART_NB: cpu_s = "153D"; break; case STM32MP151F_PART_NB: cpu_s = "151F"; break; case STM32MP151D_PART_NB: cpu_s = "151D"; break; default: cpu_s = "????"; break; } /* Package */ switch (get_cpu_package()) { case PKG_AA_LFBGA448: pkg = "AA"; break; case PKG_AB_LFBGA354: pkg = "AB"; break; case PKG_AC_TFBGA361: pkg = "AC"; break; case PKG_AD_TFBGA257: pkg = "AD"; break; default: pkg = "??"; break; } /* REVISION */ switch (stm32mp_get_chip_version()) { case STM32MP1_REV_B: cpu_r = "B"; break; case STM32MP1_REV_Z: cpu_r = "Z"; break; default: cpu_r = "?"; break; } snprintf(name, STM32_SOC_NAME_SIZE, "STM32MP%s%s Rev.%s", cpu_s, pkg, cpu_r); } void stm32mp_print_cpuinfo(void) { char name[STM32_SOC_NAME_SIZE]; stm32mp_get_soc_name(name); NOTICE("CPU: %s\n", name); } void stm32mp_print_boardinfo(void) { uint32_t board_id; uint32_t board_otp; int bsec_node, bsec_board_id_node; void *fdt; const fdt32_t *cuint; if (fdt_get_address(&fdt) == 0) { panic(); } bsec_node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT); if (bsec_node < 0) { return; } bsec_board_id_node = fdt_subnode_offset(fdt, bsec_node, "board_id"); if (bsec_board_id_node <= 0) { return; } cuint = fdt_getprop(fdt, bsec_board_id_node, "reg", NULL); if (cuint == NULL) { panic(); } board_otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t); if (bsec_shadow_read_otp(&board_id, board_otp) != BSEC_OK) { ERROR("BSEC: PART_NUMBER_OTP Error\n"); return; } if (board_id != 0U) { char rev[2]; rev[0] = BOARD_ID2REV(board_id) - 1 + 'A'; rev[1] = '\0'; NOTICE("Board: MB%04x Var%u.%u Rev.%s-%02u\n", BOARD_ID2NB(board_id), BOARD_ID2VARCPN(board_id), BOARD_ID2VARFG(board_id), rev, BOARD_ID2BOM(board_id)); } } /* Return true when SoC provides a single Cortex-A7 core, and false otherwise */ bool stm32mp_is_single_core(void) { switch (get_part_number()) { case STM32MP151A_PART_NB: case STM32MP151C_PART_NB: case STM32MP151D_PART_NB: case STM32MP151F_PART_NB: return true; default: return false; } } /* Return true when device is in closed state */ bool stm32mp_is_closed_device(void) { uint32_t value; if ((bsec_shadow_register(DATA0_OTP) != BSEC_OK) || (bsec_read_otp(&value, DATA0_OTP) != BSEC_OK)) { return true; } return (value & DATA0_OTP_SECURED) == DATA0_OTP_SECURED; } uint32_t stm32_iwdg_get_instance(uintptr_t base) { switch (base) { case IWDG1_BASE: return IWDG1_INST; case IWDG2_BASE: return IWDG2_INST; default: panic(); } } uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst) { uint32_t iwdg_cfg = 0U; uint32_t otp_value; #if defined(IMAGE_BL2) if (bsec_shadow_register(HW2_OTP) != BSEC_OK) { panic(); } #endif if (bsec_read_otp(&otp_value, HW2_OTP) != BSEC_OK) { panic(); } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) { iwdg_cfg |= IWDG_HW_ENABLED; } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) { iwdg_cfg |= IWDG_DISABLE_ON_STOP; } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) { iwdg_cfg |= IWDG_DISABLE_ON_STANDBY; } return iwdg_cfg; } #if defined(IMAGE_BL2) uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags) { uint32_t otp; uint32_t result; if (bsec_shadow_read_otp(&otp, HW2_OTP) != BSEC_OK) { panic(); } if ((flags & IWDG_DISABLE_ON_STOP) != 0U) { otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS); } if ((flags & IWDG_DISABLE_ON_STANDBY) != 0U) { otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS); } result = bsec_write_otp(otp, HW2_OTP); if (result != BSEC_OK) { return result; } /* Sticky lock OTP_IWDG (read and write) */ if ((bsec_set_sr_lock(HW2_OTP) != BSEC_OK) || (bsec_set_sw_lock(HW2_OTP) != BSEC_OK)) { return BSEC_LOCK_FAIL; } return BSEC_OK; } #endif #if STM32MP_USE_STM32IMAGE /* Get the non-secure DDR size */ uint32_t stm32mp_get_ddr_ns_size(void) { static uint32_t ddr_ns_size; uint32_t ddr_size; if (ddr_ns_size != 0U) { return ddr_ns_size; } ddr_size = dt_get_ddr_size(); if ((ddr_size <= (STM32MP_DDR_S_SIZE + STM32MP_DDR_SHMEM_SIZE)) || (ddr_size > STM32MP_DDR_MAX_SIZE)) { panic(); } ddr_ns_size = ddr_size - (STM32MP_DDR_S_SIZE + STM32MP_DDR_SHMEM_SIZE); return ddr_ns_size; } #endif /* STM32MP_USE_STM32IMAGE */ void stm32_save_boot_interface(uint32_t interface, uint32_t instance) { uint32_t bkpr_itf_idx = tamp_bkpr(TAMP_BOOT_MODE_BACKUP_REG_ID); clk_enable(RTCAPB); mmio_clrsetbits_32(bkpr_itf_idx, TAMP_BOOT_MODE_ITF_MASK, ((interface << 4) | (instance & 0xFU)) << TAMP_BOOT_MODE_ITF_SHIFT); clk_disable(RTCAPB); } void stm32_get_boot_interface(uint32_t *interface, uint32_t *instance) { static uint32_t itf; if (itf == 0U) { uint32_t bkpr = tamp_bkpr(TAMP_BOOT_MODE_BACKUP_REG_ID); clk_enable(RTCAPB); itf = (mmio_read_32(bkpr) & TAMP_BOOT_MODE_ITF_MASK) >> TAMP_BOOT_MODE_ITF_SHIFT; clk_disable(RTCAPB); } *interface = itf >> 4; *instance = itf & 0xFU; } #if !STM32MP_USE_STM32IMAGE && PSA_FWU_SUPPORT void stm32mp1_fwu_set_boot_idx(void) { clk_enable(RTCAPB); mmio_write_32(tamp_bkpr(TAMP_BOOT_COUNTER_REG_ID), plat_fwu_get_boot_idx()); clk_disable(RTCAPB); } #endif /* !STM32MP_USE_STM32IMAGE && PSA_FWU_SUPPORT */