/* * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include static const mmap_region_t sunxi_mmap[PLATFORM_MMAP_REGIONS + 1] = { MAP_REGION_FLAT(SUNXI_SRAM_BASE, SUNXI_SRAM_SIZE, MT_RW_DATA | MT_SECURE), MAP_REGION_FLAT(SUNXI_SCP_BASE, SUNXI_SCP_SIZE, MT_DEVICE | MT_RW | MT_SECURE | MT_EXECUTE_NEVER), MAP_REGION_FLAT(SUNXI_DEV_BASE, SUNXI_DEV_SIZE, MT_DEVICE | MT_RW | MT_SECURE | MT_EXECUTE_NEVER), MAP_REGION(SUNXI_DRAM_BASE, SUNXI_DRAM_VIRT_BASE, SUNXI_DRAM_SEC_SIZE, MT_RW_DATA | MT_SECURE), MAP_REGION(PLAT_SUNXI_NS_IMAGE_OFFSET, SUNXI_DRAM_VIRT_BASE + SUNXI_DRAM_SEC_SIZE, SUNXI_DRAM_MAP_SIZE, MT_RO_DATA | MT_NS), {}, }; unsigned int plat_get_syscnt_freq2(void) { return SUNXI_OSC24M_CLK_IN_HZ; } uintptr_t plat_get_ns_image_entrypoint(void) { #ifdef PRELOADED_BL33_BASE return PRELOADED_BL33_BASE; #else return PLAT_SUNXI_NS_IMAGE_OFFSET; #endif } void sunxi_configure_mmu_el3(int flags) { mmap_add_region(BL_CODE_BASE, BL_CODE_BASE, BL_CODE_END - BL_CODE_BASE, MT_CODE | MT_SECURE); mmap_add_region(BL_RO_DATA_BASE, BL_RO_DATA_BASE, BL_RO_DATA_END - BL_RO_DATA_BASE, MT_RO_DATA | MT_SECURE); mmap_add_region(BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE, MT_DEVICE | MT_RW | MT_SECURE | MT_EXECUTE_NEVER); mmap_add(sunxi_mmap); init_xlat_tables(); enable_mmu_el3(0); } #define SRAM_VER_REG (SUNXI_SYSCON_BASE + 0x24) uint16_t sunxi_read_soc_id(void) { uint32_t reg = mmio_read_32(SRAM_VER_REG); /* Set bit 15 to prepare for the SOCID read. */ mmio_write_32(SRAM_VER_REG, reg | BIT(15)); reg = mmio_read_32(SRAM_VER_REG); /* deactivate the SOCID access again */ mmio_write_32(SRAM_VER_REG, reg & ~BIT(15)); return reg >> 16; } /* * Configure a given pin to the GPIO-OUT function and sets its level. * The port is given as a capital letter, the pin is the number within * this port group. * So to set pin PC7 to high, use: sunxi_set_gpio_out('C', 7, true); */ void sunxi_set_gpio_out(char port, int pin, bool level_high) { uintptr_t port_base; if (port < 'A' || port > 'L') return; if (port == 'L') port_base = SUNXI_R_PIO_BASE; else port_base = SUNXI_PIO_BASE + (port - 'A') * 0x24; /* Set the new level first before configuring the pin. */ if (level_high) mmio_setbits_32(port_base + 0x10, BIT(pin)); else mmio_clrbits_32(port_base + 0x10, BIT(pin)); /* configure pin as GPIO out (4(3) bits per pin, 1: GPIO out */ mmio_clrsetbits_32(port_base + (pin / 8) * 4, 0x7 << ((pin % 8) * 4), 0x1 << ((pin % 8) * 4)); } int sunxi_init_platform_r_twi(uint16_t socid, bool use_rsb) { uint32_t pin_func = 0x77; uint32_t device_bit; unsigned int reset_offset = 0xb0; switch (socid) { case SUNXI_SOC_H5: if (use_rsb) return -ENODEV; pin_func = 0x22; device_bit = BIT(6); break; case SUNXI_SOC_H6: if (use_rsb) return -ENODEV; pin_func = 0x33; device_bit = BIT(16); reset_offset = 0x19c; break; case SUNXI_SOC_A64: pin_func = use_rsb ? 0x22 : 0x33; device_bit = use_rsb ? BIT(3) : BIT(6); break; default: INFO("R_I2C/RSB on Allwinner 0x%x SoC not supported\n", socid); return -ENODEV; } /* un-gate R_PIO clock */ if (socid != SUNXI_SOC_H6) mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, BIT(0)); /* switch pins PL0 and PL1 to the desired function */ mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x00, 0xffU, pin_func); /* level 2 drive strength */ mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x14, 0x0fU, 0xaU); /* set both pins to pull-up */ mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x1c, 0x0fU, 0x5U); /* un-gate clock */ if (socid != SUNXI_SOC_H6) mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, device_bit); else mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x19c, device_bit | BIT(0)); /* assert, then de-assert reset of I2C/RSB controller */ mmio_clrbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit); mmio_setbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit); return 0; } /* This lock synchronises access to the arisc management processor. */ DEFINE_BAKERY_LOCK(arisc_lock); /* * Tell the "arisc" SCP core (an OpenRISC core) to execute some code. * We don't have any service running there, so we place some OpenRISC code * in SRAM, put the address of that into the reset vector and release the * arisc reset line. The SCP will execute that code and pull the line up again. */ void sunxi_execute_arisc_code(uint32_t *code, size_t size, uint16_t param) { uintptr_t arisc_reset_vec = SUNXI_SRAM_A2_BASE + 0x100; do { bakery_lock_get(&arisc_lock); /* Wait until the arisc is in reset state. */ if (!(mmio_read_32(SUNXI_R_CPUCFG_BASE) & BIT(0))) break; bakery_lock_release(&arisc_lock); } while (1); /* Patch up the code to feed in an input parameter. */ code[0] = (code[0] & ~0xffff) | param; clean_dcache_range((uintptr_t)code, size); /* * The OpenRISC unconditional branch has opcode 0, the branch offset * is in the lower 26 bits, containing the distance to the target, * in instruction granularity (32 bits). */ mmio_write_32(arisc_reset_vec, ((uintptr_t)code - arisc_reset_vec) / 4); clean_dcache_range(arisc_reset_vec, 4); /* De-assert the arisc reset line to let it run. */ mmio_setbits_32(SUNXI_R_CPUCFG_BASE, BIT(0)); /* * We release the lock here, although the arisc is still busy. * But as long as it runs, the reset line is high, so other users * won't leave the loop above. * Once it has finished, the code is supposed to clear the reset line, * to signal this to other users. */ bakery_lock_release(&arisc_lock); }