/* * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include "spmc.h" #include "spmc_shared_mem.h" #include /** * struct spmc_shmem_obj - Shared memory object. * @desc_size: Size of @desc. * @desc_filled: Size of @desc already received. * @in_use: Number of clients that have called ffa_mem_retrieve_req * without a matching ffa_mem_relinquish call. * @desc: FF-A memory region descriptor passed in ffa_mem_share. */ struct spmc_shmem_obj { size_t desc_size; size_t desc_filled; size_t in_use; struct ffa_mtd desc; }; /* * Declare our data structure to store the metadata of memory share requests. * The main datastore is allocated on a per platform basis to ensure enough * storage can be made available. * The address of the data store will be populated by the SPMC during its * initialization. */ struct spmc_shmem_obj_state spmc_shmem_obj_state = { /* Set start value for handle so top 32 bits are needed quickly. */ .next_handle = 0xffffffc0U, }; /** * spmc_shmem_obj_size - Convert from descriptor size to object size. * @desc_size: Size of struct ffa_memory_region_descriptor object. * * Return: Size of struct spmc_shmem_obj object. */ static size_t spmc_shmem_obj_size(size_t desc_size) { return desc_size + offsetof(struct spmc_shmem_obj, desc); } /** * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. * @state: Global state. * @desc_size: Size of struct ffa_memory_region_descriptor object that * allocated object will hold. * * Return: Pointer to newly allocated object, or %NULL if there not enough space * left. The returned pointer is only valid while @state is locked, to * used it again after unlocking @state, spmc_shmem_obj_lookup must be * called. */ static struct spmc_shmem_obj * spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) { struct spmc_shmem_obj *obj; size_t free = state->data_size - state->allocated; if (state->data == NULL) { ERROR("Missing shmem datastore!\n"); return NULL; } if (spmc_shmem_obj_size(desc_size) > free) { WARN("%s(0x%zx) failed, free 0x%zx\n", __func__, desc_size, free); return NULL; } obj = (struct spmc_shmem_obj *)(state->data + state->allocated); obj->desc = (struct ffa_mtd) {0}; obj->desc_size = desc_size; obj->desc_filled = 0; obj->in_use = 0; state->allocated += spmc_shmem_obj_size(desc_size); return obj; } /** * spmc_shmem_obj_free - Free struct spmc_shmem_obj. * @state: Global state. * @obj: Object to free. * * Release memory used by @obj. Other objects may move, so on return all * pointers to struct spmc_shmem_obj object should be considered invalid, not * just @obj. * * The current implementation always compacts the remaining objects to simplify * the allocator and to avoid fragmentation. */ static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, struct spmc_shmem_obj *obj) { size_t free_size = spmc_shmem_obj_size(obj->desc_size); uint8_t *shift_dest = (uint8_t *)obj; uint8_t *shift_src = shift_dest + free_size; size_t shift_size = state->allocated - (shift_src - state->data); if (shift_size != 0U) { memmove(shift_dest, shift_src, shift_size); } state->allocated -= free_size; } /** * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. * @state: Global state. * @handle: Unique handle of object to return. * * Return: struct spmc_shmem_obj_state object with handle matching @handle. * %NULL, if not object in @state->data has a matching handle. */ static struct spmc_shmem_obj * spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) { uint8_t *curr = state->data; while (curr - state->data < state->allocated) { struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; if (obj->desc.handle == handle) { return obj; } curr += spmc_shmem_obj_size(obj->desc_size); } return NULL; } /** * spmc_shmem_obj_get_next - Get the next memory object from an offset. * @offset: Offset used to track which objects have previously been * returned. * * Return: the next struct spmc_shmem_obj_state object from the provided * offset. * %NULL, if there are no more objects. */ static struct spmc_shmem_obj * spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) { uint8_t *curr = state->data + *offset; if (curr - state->data < state->allocated) { struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; *offset += spmc_shmem_obj_size(obj->desc_size); return obj; } return NULL; } /******************************************************************************* * FF-A memory descriptor helper functions. ******************************************************************************/ /** * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the * clients FF-A version. * @desc: The memory transaction descriptor. * @index: The index of the emad element to be accessed. * @ffa_version: FF-A version of the provided structure. * @emad_size: Will be populated with the size of the returned emad * descriptor. * Return: A pointer to the requested emad structure. */ static void * spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, uint32_t ffa_version, size_t *emad_size) { uint8_t *emad; /* * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 * format, otherwise assume it is a v1.1 format. */ if (ffa_version == MAKE_FFA_VERSION(1, 0)) { /* Cast our descriptor to the v1.0 format. */ struct ffa_mtd_v1_0 *mtd_v1_0 = (struct ffa_mtd_v1_0 *) desc; emad = (uint8_t *) &(mtd_v1_0->emad); *emad_size = sizeof(struct ffa_emad_v1_0); } else { if (!is_aligned(desc->emad_offset, 16)) { WARN("Emad offset is not aligned.\n"); return NULL; } emad = ((uint8_t *) desc + desc->emad_offset); *emad_size = desc->emad_size; } return (emad + (*emad_size * index)); } /** * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the * FF-A version of the descriptor. * @obj: Object containing ffa_memory_region_descriptor. * * Return: struct ffa_comp_mrd object corresponding to the composite memory * region descriptor. */ static struct ffa_comp_mrd * spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) { size_t emad_size; /* * The comp_mrd_offset field of the emad descriptor remains consistent * between FF-A versions therefore we can use the v1.0 descriptor here * in all cases. */ struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, ffa_version, &emad_size); /* Ensure the emad array was found. */ if (emad == NULL) { return NULL; } /* Ensure the composite descriptor offset is aligned. */ if (!is_aligned(emad->comp_mrd_offset, 8)) { WARN("Unaligned composite memory region descriptor offset.\n"); return NULL; } return (struct ffa_comp_mrd *) ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); } /** * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj. * @obj: Object containing ffa_memory_region_descriptor. * * Return: Size of ffa_constituent_memory_region_descriptors in @obj. */ static size_t spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj, uint32_t ffa_version) { struct ffa_comp_mrd *comp_mrd; comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); if (comp_mrd == NULL) { return 0; } return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd); } /* * Compare two memory regions to determine if any range overlaps with another * ongoing memory transaction. */ static bool overlapping_memory_regions(struct ffa_comp_mrd *region1, struct ffa_comp_mrd *region2) { uint64_t region1_start; uint64_t region1_size; uint64_t region1_end; uint64_t region2_start; uint64_t region2_size; uint64_t region2_end; assert(region1 != NULL); assert(region2 != NULL); if (region1 == region2) { return true; } /* * Check each memory region in the request against existing * transactions. */ for (size_t i = 0; i < region1->address_range_count; i++) { region1_start = region1->address_range_array[i].address; region1_size = region1->address_range_array[i].page_count * PAGE_SIZE_4KB; region1_end = region1_start + region1_size; for (size_t j = 0; j < region2->address_range_count; j++) { region2_start = region2->address_range_array[j].address; region2_size = region2->address_range_array[j].page_count * PAGE_SIZE_4KB; region2_end = region2_start + region2_size; if ((region1_start >= region2_start && region1_start < region2_end) || (region1_end > region2_start && region1_end < region2_end)) { WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", region1_start, region1_end, region2_start, region2_end); return true; } } } return false; } /******************************************************************************* * FF-A v1.0 Memory Descriptor Conversion Helpers. ******************************************************************************/ /** * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 * converted descriptor. * @orig: The original v1.0 memory transaction descriptor. * @desc_size: The size of the original v1.0 memory transaction descriptor. * * Return: the size required to store the descriptor store in the v1.1 format. */ static size_t spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) { size_t size = 0; struct ffa_comp_mrd *mrd; struct ffa_emad_v1_0 *emad_array = orig->emad; /* Get the size of the v1.1 descriptor. */ size += sizeof(struct ffa_mtd); /* Add the size of the emad descriptors. */ size += orig->emad_count * sizeof(struct ffa_emad_v1_0); /* Add the size of the composite mrds. */ size += sizeof(struct ffa_comp_mrd); /* Add the size of the constituent mrds. */ mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + emad_array[0].comp_mrd_offset); /* Check the calculated address is within the memory descriptor. */ if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) { return 0; } size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); return size; } /** * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 * converted descriptor. * @orig: The original v1.1 memory transaction descriptor. * @desc_size: The size of the original v1.1 memory transaction descriptor. * * Return: the size required to store the descriptor store in the v1.0 format. */ static size_t spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) { size_t size = 0; struct ffa_comp_mrd *mrd; struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) ((uint8_t *) orig + orig->emad_offset); /* Get the size of the v1.0 descriptor. */ size += sizeof(struct ffa_mtd_v1_0); /* Add the size of the v1.0 emad descriptors. */ size += orig->emad_count * sizeof(struct ffa_emad_v1_0); /* Add the size of the composite mrds. */ size += sizeof(struct ffa_comp_mrd); /* Add the size of the constituent mrds. */ mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + emad_array[0].comp_mrd_offset); /* Check the calculated address is within the memory descriptor. */ if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) { return 0; } size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); return size; } /** * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. * @out_obj: The shared memory object to populate the converted descriptor. * @orig: The shared memory object containing the v1.0 descriptor. * * Return: true if the conversion is successful else false. */ static bool spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, struct spmc_shmem_obj *orig) { struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; struct ffa_mtd *out = &out_obj->desc; struct ffa_emad_v1_0 *emad_array_in; struct ffa_emad_v1_0 *emad_array_out; struct ffa_comp_mrd *mrd_in; struct ffa_comp_mrd *mrd_out; size_t mrd_in_offset; size_t mrd_out_offset; size_t mrd_size = 0; /* Populate the new descriptor format from the v1.0 struct. */ out->sender_id = mtd_orig->sender_id; out->memory_region_attributes = mtd_orig->memory_region_attributes; out->flags = mtd_orig->flags; out->handle = mtd_orig->handle; out->tag = mtd_orig->tag; out->emad_count = mtd_orig->emad_count; out->emad_size = sizeof(struct ffa_emad_v1_0); /* * We will locate the emad descriptors directly after the ffa_mtd * struct. This will be 8-byte aligned. */ out->emad_offset = sizeof(struct ffa_mtd); emad_array_in = mtd_orig->emad; emad_array_out = (struct ffa_emad_v1_0 *) ((uint8_t *) out + out->emad_offset); /* Copy across the emad structs. */ for (unsigned int i = 0U; i < out->emad_count; i++) { memcpy(&emad_array_out[i], &emad_array_in[i], sizeof(struct ffa_emad_v1_0)); } /* Place the mrd descriptors after the end of the emad descriptors.*/ mrd_in_offset = emad_array_in->comp_mrd_offset; mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); /* Add the size of the composite memory region descriptor. */ mrd_size += sizeof(struct ffa_comp_mrd); /* Find the mrd descriptor. */ mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); /* Add the size of the constituent memory region descriptors. */ mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); /* * Update the offset in the emads by the delta between the input and * output addresses. */ for (unsigned int i = 0U; i < out->emad_count; i++) { emad_array_out[i].comp_mrd_offset = emad_array_in[i].comp_mrd_offset + (mrd_out_offset - mrd_in_offset); } /* Verify that we stay within bound of the memory descriptors. */ if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { ERROR("%s: Invalid mrd structure.\n", __func__); return false; } /* Copy the mrd descriptors directly. */ memcpy(mrd_out, mrd_in, mrd_size); return true; } /** * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to * v1.0 memory object. * @out_obj: The shared memory object to populate the v1.0 descriptor. * @orig: The shared memory object containing the v1.1 descriptor. * * Return: true if the conversion is successful else false. */ static bool spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, struct spmc_shmem_obj *orig) { struct ffa_mtd *mtd_orig = &orig->desc; struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; struct ffa_emad_v1_0 *emad_in; struct ffa_emad_v1_0 *emad_array_in; struct ffa_emad_v1_0 *emad_array_out; struct ffa_comp_mrd *mrd_in; struct ffa_comp_mrd *mrd_out; size_t mrd_in_offset; size_t mrd_out_offset; size_t emad_out_array_size; size_t mrd_size = 0; /* Populate the v1.0 descriptor format from the v1.1 struct. */ out->sender_id = mtd_orig->sender_id; out->memory_region_attributes = mtd_orig->memory_region_attributes; out->flags = mtd_orig->flags; out->handle = mtd_orig->handle; out->tag = mtd_orig->tag; out->emad_count = mtd_orig->emad_count; /* Determine the location of the emad array in both descriptors. */ emad_array_in = (struct ffa_emad_v1_0 *) ((uint8_t *) mtd_orig + mtd_orig->emad_offset); emad_array_out = out->emad; /* Copy across the emad structs. */ emad_in = emad_array_in; for (unsigned int i = 0U; i < out->emad_count; i++) { memcpy(&emad_array_out[i], emad_in, sizeof(struct ffa_emad_v1_0)); emad_in += mtd_orig->emad_size; } /* Place the mrd descriptors after the end of the emad descriptors. */ emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + emad_out_array_size; mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); mrd_in_offset = mtd_orig->emad_offset + (mtd_orig->emad_size * mtd_orig->emad_count); /* Add the size of the composite memory region descriptor. */ mrd_size += sizeof(struct ffa_comp_mrd); /* Find the mrd descriptor. */ mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); /* Add the size of the constituent memory region descriptors. */ mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); /* * Update the offset in the emads by the delta between the input and * output addresses. */ emad_in = emad_array_in; for (unsigned int i = 0U; i < out->emad_count; i++) { emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + (mrd_out_offset - mrd_in_offset); emad_in += mtd_orig->emad_size; } /* Verify that we stay within bound of the memory descriptors. */ if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { ERROR("%s: Invalid mrd structure.\n", __func__); return false; } /* Copy the mrd descriptors directly. */ memcpy(mrd_out, mrd_in, mrd_size); return true; } /** * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to * the v1.0 format and populates the * provided buffer. * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. * @buf_size: Size of the buffer to populate. * @offset: The offset of the converted descriptor to copy. * @copy_size: Will be populated with the number of bytes copied. * @out_desc_size: Will be populated with the total size of the v1.0 * descriptor. * * Return: 0 if conversion and population succeeded. * Note: This function invalidates the reference to @orig therefore * `spmc_shmem_obj_lookup` must be called if further usage is required. */ static uint32_t spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, size_t buf_size, size_t offset, size_t *copy_size, size_t *v1_0_desc_size) { struct spmc_shmem_obj *v1_0_obj; /* Calculate the size that the v1.0 descriptor will require. */ *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( &orig_obj->desc, orig_obj->desc_size); if (*v1_0_desc_size == 0) { ERROR("%s: cannot determine size of descriptor.\n", __func__); return FFA_ERROR_INVALID_PARAMETER; } /* Get a new obj to store the v1.0 descriptor. */ v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, *v1_0_desc_size); if (!v1_0_obj) { return FFA_ERROR_NO_MEMORY; } /* Perform the conversion from v1.1 to v1.0. */ if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); return FFA_ERROR_INVALID_PARAMETER; } *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); /* * We're finished with the v1.0 descriptor for now so free it. * Note that this will invalidate any references to the v1.1 * descriptor. */ spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); return 0; } /** * spmc_shmem_check_obj - Check that counts in descriptor match overall size. * @obj: Object containing ffa_memory_region_descriptor. * @ffa_version: FF-A version of the provided descriptor. * * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor * offset or count is invalid. */ static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, uint32_t ffa_version) { uint32_t comp_mrd_offset = 0; if (obj->desc.emad_count == 0U) { WARN("%s: unsupported attribute desc count %u.\n", __func__, obj->desc.emad_count); return -EINVAL; } for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) { size_t size; size_t count; size_t expected_size; size_t total_page_count; size_t emad_size; size_t desc_size; size_t header_emad_size; uint32_t offset; struct ffa_comp_mrd *comp; struct ffa_emad_v1_0 *emad; emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num, ffa_version, &emad_size); if (emad == NULL) { WARN("%s: invalid emad structure.\n", __func__); return -EINVAL; } /* * Validate the calculated emad address resides within the * descriptor. */ if ((uintptr_t) emad >= (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) { WARN("Invalid emad access.\n"); return -EINVAL; } offset = emad->comp_mrd_offset; if (ffa_version == MAKE_FFA_VERSION(1, 0)) { desc_size = sizeof(struct ffa_mtd_v1_0); } else { desc_size = sizeof(struct ffa_mtd); } header_emad_size = desc_size + (obj->desc.emad_count * emad_size); if (offset < header_emad_size) { WARN("%s: invalid object, offset %u < header + emad %zu\n", __func__, offset, header_emad_size); return -EINVAL; } size = obj->desc_size; if (offset > size) { WARN("%s: invalid object, offset %u > total size %zu\n", __func__, offset, obj->desc_size); return -EINVAL; } size -= offset; if (size < sizeof(struct ffa_comp_mrd)) { WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", __func__, offset, obj->desc_size); return -EINVAL; } size -= sizeof(struct ffa_comp_mrd); count = size / sizeof(struct ffa_cons_mrd); comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); if (comp == NULL) { WARN("%s: invalid comp_mrd offset\n", __func__); return -EINVAL; } if (comp->address_range_count != count) { WARN("%s: invalid object, desc count %u != %zu\n", __func__, comp->address_range_count, count); return -EINVAL; } expected_size = offset + sizeof(*comp) + spmc_shmem_obj_ffa_constituent_size(obj, ffa_version); if (expected_size != obj->desc_size) { WARN("%s: invalid object, computed size %zu != size %zu\n", __func__, expected_size, obj->desc_size); return -EINVAL; } if (obj->desc_filled < obj->desc_size) { /* * The whole descriptor has not yet been received. * Skip final checks. */ return 0; } /* * The offset provided to the composite memory region descriptor * should be consistent across endpoint descriptors. Store the * first entry and compare against subsequent entries. */ if (comp_mrd_offset == 0) { comp_mrd_offset = offset; } else { if (comp_mrd_offset != offset) { ERROR("%s: mismatching offsets provided, %u != %u\n", __func__, offset, comp_mrd_offset); return -EINVAL; } } total_page_count = 0; for (size_t i = 0; i < count; i++) { total_page_count += comp->address_range_array[i].page_count; } if (comp->total_page_count != total_page_count) { WARN("%s: invalid object, desc total_page_count %u != %zu\n", __func__, comp->total_page_count, total_page_count); return -EINVAL; } } return 0; } /** * spmc_shmem_check_state_obj - Check if the descriptor describes memory * regions that are currently involved with an * existing memory transactions. This implies that * the memory is not in a valid state for lending. * @obj: Object containing ffa_memory_region_descriptor. * * Return: 0 if object is valid, -EINVAL if invalid memory state. */ static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, uint32_t ffa_version) { size_t obj_offset = 0; struct spmc_shmem_obj *inflight_obj; struct ffa_comp_mrd *other_mrd; struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); if (requested_mrd == NULL) { return -EINVAL; } inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, &obj_offset); while (inflight_obj != NULL) { /* * Don't compare the transaction to itself or to partially * transmitted descriptors. */ if ((obj->desc.handle != inflight_obj->desc.handle) && (obj->desc_size == obj->desc_filled)) { other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, ffa_version); if (other_mrd == NULL) { return -EINVAL; } if (overlapping_memory_regions(requested_mrd, other_mrd)) { return -EINVAL; } } inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, &obj_offset); } return 0; } static long spmc_ffa_fill_desc(struct mailbox *mbox, struct spmc_shmem_obj *obj, uint32_t fragment_length, ffa_mtd_flag32_t mtd_flag, uint32_t ffa_version, void *smc_handle) { int ret; size_t emad_size; uint32_t handle_low; uint32_t handle_high; struct ffa_emad_v1_0 *emad; struct ffa_emad_v1_0 *other_emad; if (mbox->rxtx_page_count == 0U) { WARN("%s: buffer pair not registered.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_arg; } if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) { WARN("%s: bad fragment size %u > %u buffer size\n", __func__, fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB); ret = FFA_ERROR_INVALID_PARAMETER; goto err_arg; } memcpy((uint8_t *)&obj->desc + obj->desc_filled, (uint8_t *) mbox->tx_buffer, fragment_length); if (fragment_length > obj->desc_size - obj->desc_filled) { WARN("%s: bad fragment size %u > %zu remaining\n", __func__, fragment_length, obj->desc_size - obj->desc_filled); ret = FFA_ERROR_INVALID_PARAMETER; goto err_arg; } /* Ensure that the sender ID resides in the normal world. */ if (ffa_is_secure_world_id(obj->desc.sender_id)) { WARN("%s: Invalid sender ID 0x%x.\n", __func__, obj->desc.sender_id); ret = FFA_ERROR_DENIED; goto err_arg; } /* Ensure the NS bit is set to 0. */ if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { WARN("%s: NS mem attributes flags MBZ.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_arg; } /* * We don't currently support any optional flags so ensure none are * requested. */ if (obj->desc.flags != 0U && mtd_flag != 0U && (obj->desc.flags != mtd_flag)) { WARN("%s: invalid memory transaction flags %u != %u\n", __func__, obj->desc.flags, mtd_flag); ret = FFA_ERROR_INVALID_PARAMETER; goto err_arg; } if (obj->desc_filled == 0U) { /* First fragment, descriptor header has been copied */ obj->desc.handle = spmc_shmem_obj_state.next_handle++; obj->desc.flags |= mtd_flag; } obj->desc_filled += fragment_length; ret = spmc_shmem_check_obj(obj, ffa_version); if (ret != 0) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } handle_low = (uint32_t)obj->desc.handle; handle_high = obj->desc.handle >> 32; if (obj->desc_filled != obj->desc_size) { SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, handle_high, obj->desc_filled, (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); } /* The full descriptor has been received, perform any final checks. */ /* * If a partition ID resides in the secure world validate that the * partition ID is for a known partition. Ignore any partition ID * belonging to the normal world as it is assumed the Hypervisor will * have validated these. */ for (size_t i = 0; i < obj->desc.emad_count; i++) { emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, &emad_size); if (emad == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id; if (ffa_is_secure_world_id(ep_id)) { if (spmc_get_sp_ctx(ep_id) == NULL) { WARN("%s: Invalid receiver id 0x%x\n", __func__, ep_id); ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } } } /* Ensure partition IDs are not duplicated. */ for (size_t i = 0; i < obj->desc.emad_count; i++) { emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, &emad_size); if (emad == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } for (size_t j = i + 1; j < obj->desc.emad_count; j++) { other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, ffa_version, &emad_size); if (other_emad == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } if (emad->mapd.endpoint_id == other_emad->mapd.endpoint_id) { WARN("%s: Duplicated endpoint id 0x%x\n", __func__, emad->mapd.endpoint_id); ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } } } ret = spmc_shmem_check_state_obj(obj, ffa_version); if (ret) { ERROR("%s: invalid memory region descriptor.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_bad_desc; } /* * Everything checks out, if the sender was using FF-A v1.0, convert * the descriptor format to use the v1.1 structures. */ if (ffa_version == MAKE_FFA_VERSION(1, 0)) { struct spmc_shmem_obj *v1_1_obj; uint64_t mem_handle; /* Calculate the size that the v1.1 descriptor will required. */ size_t v1_1_desc_size = spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, fragment_length); if (v1_1_desc_size == 0U) { ERROR("%s: cannot determine size of descriptor.\n", __func__); goto err_arg; } /* Get a new obj to store the v1.1 descriptor. */ v1_1_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size); if (!obj) { ret = FFA_ERROR_NO_MEMORY; goto err_arg; } /* Perform the conversion from v1.0 to v1.1. */ v1_1_obj->desc_size = v1_1_desc_size; v1_1_obj->desc_filled = v1_1_desc_size; if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { ERROR("%s: Could not convert mtd!\n", __func__); spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); goto err_arg; } /* * We're finished with the v1.0 descriptor so free it * and continue our checks with the new v1.1 descriptor. */ mem_handle = obj->desc.handle; spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); if (obj == NULL) { ERROR("%s: Failed to find converted descriptor.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; return spmc_ffa_error_return(smc_handle, ret); } } /* Allow for platform specific operations to be performed. */ ret = plat_spmc_shmem_begin(&obj->desc); if (ret != 0) { goto err_arg; } SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 0, 0, 0); err_bad_desc: err_arg: spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); return spmc_ffa_error_return(smc_handle, ret); } /** * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. * @client: Client state. * @total_length: Total length of shared memory descriptor. * @fragment_length: Length of fragment of shared memory descriptor passed in * this call. * @address: Not supported, must be 0. * @page_count: Not supported, must be 0. * @smc_handle: Handle passed to smc call. Used to return * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. * * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed * to share or lend memory from non-secure os to secure os (with no stream * endpoints). * * Return: 0 on success, error code on failure. */ long spmc_ffa_mem_send(uint32_t smc_fid, bool secure_origin, uint64_t total_length, uint32_t fragment_length, uint64_t address, uint32_t page_count, void *cookie, void *handle, uint64_t flags) { long ret; struct spmc_shmem_obj *obj; struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); ffa_mtd_flag32_t mtd_flag; uint32_t ffa_version = get_partition_ffa_version(secure_origin); if (address != 0U || page_count != 0U) { WARN("%s: custom memory region for message not supported.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } if (secure_origin) { WARN("%s: unsupported share direction.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } /* * Check if the descriptor is smaller than the v1.0 descriptor. The * descriptor cannot be smaller than this structure. */ if (fragment_length < sizeof(struct ffa_mtd_v1_0)) { WARN("%s: bad first fragment size %u < %zu\n", __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; } else { WARN("%s: invalid memory management operation.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } spin_lock(&spmc_shmem_obj_state.lock); obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); if (obj == NULL) { ret = FFA_ERROR_NO_MEMORY; goto err_unlock; } spin_lock(&mbox->lock); ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, ffa_version, handle); spin_unlock(&mbox->lock); spin_unlock(&spmc_shmem_obj_state.lock); return ret; err_unlock: spin_unlock(&spmc_shmem_obj_state.lock); return spmc_ffa_error_return(handle, ret); } /** * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. * @client: Client state. * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. * @fragment_length: Length of fragments transmitted. * @sender_id: Vmid of sender in bits [31:16] * @smc_handle: Handle passed to smc call. Used to return * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. * * Return: @smc_handle on success, error code on failure. */ long spmc_ffa_mem_frag_tx(uint32_t smc_fid, bool secure_origin, uint64_t handle_low, uint64_t handle_high, uint32_t fragment_length, uint32_t sender_id, void *cookie, void *handle, uint64_t flags) { long ret; uint32_t desc_sender_id; uint32_t ffa_version = get_partition_ffa_version(secure_origin); struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); struct spmc_shmem_obj *obj; uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); spin_lock(&spmc_shmem_obj_state.lock); obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); if (obj == NULL) { WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", __func__, mem_handle); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock; } desc_sender_id = (uint32_t)obj->desc.sender_id << 16; if (sender_id != desc_sender_id) { WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, sender_id, desc_sender_id); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock; } if (obj->desc_filled == obj->desc_size) { WARN("%s: object desc already filled, %zu\n", __func__, obj->desc_filled); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock; } spin_lock(&mbox->lock); ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, handle); spin_unlock(&mbox->lock); spin_unlock(&spmc_shmem_obj_state.lock); return ret; err_unlock: spin_unlock(&spmc_shmem_obj_state.lock); return spmc_ffa_error_return(handle, ret); } /** * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor * if the caller implements a version greater * than FF-A 1.0 or if they have requested * the functionality. * TODO: We are assuming that the caller is * an SP. To support retrieval from the * normal world this function will need to be * expanded accordingly. * @resp: Descriptor populated in callers RX buffer. * @sp_ctx: Context of the calling SP. */ void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, struct secure_partition_desc *sp_ctx) { if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || sp_ctx->ns_bit_requested) { /* * Currently memory senders must reside in the normal * world, and we do not have the functionlaity to change * the state of memory dynamically. Therefore we can always set * the NS bit to 1. */ resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; } } /** * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. * @smc_fid: FID of SMC * @total_length: Total length of retrieve request descriptor if this is * the first call. Otherwise (unsupported) must be 0. * @fragment_length: Length of fragment of retrieve request descriptor passed * in this call. Only @fragment_length == @length is * supported by this implementation. * @address: Not supported, must be 0. * @page_count: Not supported, must be 0. * @smc_handle: Handle passed to smc call. Used to return * FFA_MEM_RETRIEVE_RESP. * * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. * Used by secure os to retrieve memory already shared by non-secure os. * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, * the client must call FFA_MEM_FRAG_RX until the full response has been * received. * * Return: @handle on success, error code on failure. */ long spmc_ffa_mem_retrieve_req(uint32_t smc_fid, bool secure_origin, uint32_t total_length, uint32_t fragment_length, uint64_t address, uint32_t page_count, void *cookie, void *handle, uint64_t flags) { int ret; size_t buf_size; size_t copy_size = 0; size_t min_desc_size; size_t out_desc_size = 0; /* * Currently we are only accessing fields that are the same in both the * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly * here. We only need validate against the appropriate struct size. */ struct ffa_mtd *resp; const struct ffa_mtd *req; struct spmc_shmem_obj *obj = NULL; struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); uint32_t ffa_version = get_partition_ffa_version(secure_origin); struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); if (!secure_origin) { WARN("%s: unsupported retrieve req direction.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } if (address != 0U || page_count != 0U) { WARN("%s: custom memory region not supported.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } spin_lock(&mbox->lock); req = mbox->tx_buffer; resp = mbox->rx_buffer; buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; if (mbox->rxtx_page_count == 0U) { WARN("%s: buffer pair not registered.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_mailbox; } if (mbox->state != MAILBOX_STATE_EMPTY) { WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); ret = FFA_ERROR_DENIED; goto err_unlock_mailbox; } if (fragment_length != total_length) { WARN("%s: fragmented retrieve request not supported.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_mailbox; } if (req->emad_count == 0U) { WARN("%s: unsupported attribute desc count %u.\n", __func__, obj->desc.emad_count); return -EINVAL; } /* Determine the appropriate minimum descriptor size. */ if (ffa_version == MAKE_FFA_VERSION(1, 0)) { min_desc_size = sizeof(struct ffa_mtd_v1_0); } else { min_desc_size = sizeof(struct ffa_mtd); } if (total_length < min_desc_size) { WARN("%s: invalid length %u < %zu\n", __func__, total_length, min_desc_size); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_mailbox; } spin_lock(&spmc_shmem_obj_state.lock); obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); if (obj == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (obj->desc_filled != obj->desc_size) { WARN("%s: incomplete object desc filled %zu < size %zu\n", __func__, obj->desc_filled, obj->desc_size); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { WARN("%s: wrong sender id 0x%x != 0x%x\n", __func__, req->sender_id, obj->desc.sender_id); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (req->emad_count != 0U && req->tag != obj->desc.tag) { WARN("%s: wrong tag 0x%lx != 0x%lx\n", __func__, req->tag, obj->desc.tag); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { WARN("%s: mistmatch of endpoint counts %u != %u\n", __func__, req->emad_count, obj->desc.emad_count); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } /* Ensure the NS bit is set to 0 in the request. */ if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { WARN("%s: NS mem attributes flags MBZ.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (req->flags != 0U) { if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { /* * If the retrieve request specifies the memory * transaction ensure it matches what we expect. */ WARN("%s: wrong mem transaction flags %x != %x\n", __func__, req->flags, obj->desc.flags); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { /* * Current implementation does not support donate and * it supports no other flags. */ WARN("%s: invalid flags 0x%x\n", __func__, req->flags); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } } /* Validate that the provided emad offset and structure is valid.*/ for (size_t i = 0; i < req->emad_count; i++) { size_t emad_size; struct ffa_emad_v1_0 *emad; emad = spmc_shmem_obj_get_emad(req, i, ffa_version, &emad_size); if (emad == NULL) { WARN("%s: invalid emad structure.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if ((uintptr_t) emad >= (uintptr_t) ((uint8_t *) req + total_length)) { WARN("Invalid emad access.\n"); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } } /* * Validate all the endpoints match in the case of multiple * borrowers. We don't mandate that the order of the borrowers * must match in the descriptors therefore check to see if the * endpoints match in any order. */ for (size_t i = 0; i < req->emad_count; i++) { bool found = false; size_t emad_size; struct ffa_emad_v1_0 *emad; struct ffa_emad_v1_0 *other_emad; emad = spmc_shmem_obj_get_emad(req, i, ffa_version, &emad_size); if (emad == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } for (size_t j = 0; j < obj->desc.emad_count; j++) { other_emad = spmc_shmem_obj_get_emad( &obj->desc, j, MAKE_FFA_VERSION(1, 1), &emad_size); if (other_emad == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (req->emad_count && emad->mapd.endpoint_id == other_emad->mapd.endpoint_id) { found = true; break; } } if (!found) { WARN("%s: invalid receiver id (0x%x).\n", __func__, emad->mapd.endpoint_id); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } } mbox->state = MAILBOX_STATE_FULL; if (req->emad_count != 0U) { obj->in_use++; } /* * If the caller is v1.0 convert the descriptor, otherwise copy * directly. */ if (ffa_version == MAKE_FFA_VERSION(1, 0)) { ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, ©_size, &out_desc_size); if (ret != 0U) { ERROR("%s: Failed to process descriptor.\n", __func__); goto err_unlock_all; } } else { copy_size = MIN(obj->desc_size, buf_size); out_desc_size = obj->desc_size; memcpy(resp, &obj->desc, copy_size); } /* Set the NS bit in the response if applicable. */ spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); spin_unlock(&spmc_shmem_obj_state.lock); spin_unlock(&mbox->lock); SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, copy_size, 0, 0, 0, 0, 0); err_unlock_all: spin_unlock(&spmc_shmem_obj_state.lock); err_unlock_mailbox: spin_unlock(&mbox->lock); return spmc_ffa_error_return(handle, ret); } /** * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. * @client: Client state. * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. * @fragment_offset: Byte offset in descriptor to resume at. * @sender_id: Bit[31:16]: Endpoint id of sender if client is a * hypervisor. 0 otherwise. * @smc_handle: Handle passed to smc call. Used to return * FFA_MEM_FRAG_TX. * * Return: @smc_handle on success, error code on failure. */ long spmc_ffa_mem_frag_rx(uint32_t smc_fid, bool secure_origin, uint32_t handle_low, uint32_t handle_high, uint32_t fragment_offset, uint32_t sender_id, void *cookie, void *handle, uint64_t flags) { int ret; void *src; size_t buf_size; size_t copy_size; size_t full_copy_size; uint32_t desc_sender_id; struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); struct spmc_shmem_obj *obj; uint32_t ffa_version = get_partition_ffa_version(secure_origin); if (!secure_origin) { WARN("%s: can only be called from swld.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } spin_lock(&spmc_shmem_obj_state.lock); obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); if (obj == NULL) { WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", __func__, mem_handle); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_shmem; } desc_sender_id = (uint32_t)obj->desc.sender_id << 16; if (sender_id != 0U && sender_id != desc_sender_id) { WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, sender_id, desc_sender_id); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_shmem; } if (fragment_offset >= obj->desc_size) { WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", __func__, fragment_offset, obj->desc_size); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_shmem; } spin_lock(&mbox->lock); if (mbox->rxtx_page_count == 0U) { WARN("%s: buffer pair not registered.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (mbox->state != MAILBOX_STATE_EMPTY) { WARN("%s: RX Buffer is full!\n", __func__); ret = FFA_ERROR_DENIED; goto err_unlock_all; } buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; mbox->state = MAILBOX_STATE_FULL; /* * If the caller is v1.0 convert the descriptor, otherwise copy * directly. */ if (ffa_version == MAKE_FFA_VERSION(1, 0)) { size_t out_desc_size; ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, buf_size, fragment_offset, ©_size, &out_desc_size); if (ret != 0U) { ERROR("%s: Failed to process descriptor.\n", __func__); goto err_unlock_all; } } else { full_copy_size = obj->desc_size - fragment_offset; copy_size = MIN(full_copy_size, buf_size); src = &obj->desc; memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); } spin_unlock(&mbox->lock); spin_unlock(&spmc_shmem_obj_state.lock); SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, copy_size, sender_id, 0, 0, 0); err_unlock_all: spin_unlock(&mbox->lock); err_unlock_shmem: spin_unlock(&spmc_shmem_obj_state.lock); return spmc_ffa_error_return(handle, ret); } /** * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. * @client: Client state. * * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. * Used by secure os release previously shared memory to non-secure os. * * The handle to release must be in the client's (secure os's) transmit buffer. * * Return: 0 on success, error code on failure. */ int spmc_ffa_mem_relinquish(uint32_t smc_fid, bool secure_origin, uint32_t handle_low, uint32_t handle_high, uint32_t fragment_offset, uint32_t sender_id, void *cookie, void *handle, uint64_t flags) { int ret; struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); struct spmc_shmem_obj *obj; const struct ffa_mem_relinquish_descriptor *req; if (!secure_origin) { WARN("%s: unsupported relinquish direction.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } spin_lock(&mbox->lock); if (mbox->rxtx_page_count == 0U) { WARN("%s: buffer pair not registered.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_mailbox; } req = mbox->tx_buffer; if (req->flags != 0U) { WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_mailbox; } if (req->endpoint_count == 0) { WARN("%s: endpoint count cannot be 0.\n", __func__); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_mailbox; } spin_lock(&spmc_shmem_obj_state.lock); obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); if (obj == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } if (obj->desc.emad_count != req->endpoint_count) { WARN("%s: mismatch of endpoint count %u != %u\n", __func__, obj->desc.emad_count, req->endpoint_count); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } /* Validate requested endpoint IDs match descriptor. */ for (size_t i = 0; i < req->endpoint_count; i++) { bool found = false; size_t emad_size; struct ffa_emad_v1_0 *emad; for (unsigned int j = 0; j < obj->desc.emad_count; j++) { emad = spmc_shmem_obj_get_emad(&obj->desc, j, MAKE_FFA_VERSION(1, 1), &emad_size); if (req->endpoint_array[i] == emad->mapd.endpoint_id) { found = true; break; } } if (!found) { WARN("%s: Invalid endpoint ID (0x%x).\n", __func__, req->endpoint_array[i]); ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } } if (obj->in_use == 0U) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock_all; } obj->in_use--; spin_unlock(&spmc_shmem_obj_state.lock); spin_unlock(&mbox->lock); SMC_RET1(handle, FFA_SUCCESS_SMC32); err_unlock_all: spin_unlock(&spmc_shmem_obj_state.lock); err_unlock_mailbox: spin_unlock(&mbox->lock); return spmc_ffa_error_return(handle, ret); } /** * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. * @client: Client state. * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. * @handle_high: Unique handle of shared memory object to reclaim. * Bit[63:32]. * @flags: Unsupported, ignored. * * Implements a subset of the FF-A FFA_MEM_RECLAIM call. * Used by non-secure os reclaim memory previously shared with secure os. * * Return: 0 on success, error code on failure. */ int spmc_ffa_mem_reclaim(uint32_t smc_fid, bool secure_origin, uint32_t handle_low, uint32_t handle_high, uint32_t mem_flags, uint64_t x4, void *cookie, void *handle, uint64_t flags) { int ret; struct spmc_shmem_obj *obj; uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); if (secure_origin) { WARN("%s: unsupported reclaim direction.\n", __func__); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } if (mem_flags != 0U) { WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); } spin_lock(&spmc_shmem_obj_state.lock); obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); if (obj == NULL) { ret = FFA_ERROR_INVALID_PARAMETER; goto err_unlock; } if (obj->in_use != 0U) { ret = FFA_ERROR_DENIED; goto err_unlock; } /* Allow for platform specific operations to be performed. */ ret = plat_spmc_shmem_reclaim(&obj->desc); if (ret != 0) { goto err_unlock; } spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); spin_unlock(&spmc_shmem_obj_state.lock); SMC_RET1(handle, FFA_SUCCESS_SMC32); err_unlock: spin_unlock(&spmc_shmem_obj_state.lock); return spmc_ffa_error_return(handle, ret); }