/* * Copyright 2021 NXP * * SPDX-License-Identifier: BSD-3-Clause * */ #include #include #include #include #include #include #include #include #include #include #include #include static int write_a_fuse(uint32_t *fuse_addr, uint32_t *fuse_hdr_val, uint32_t mask) { uint32_t last_stored_val = sfp_read32(fuse_addr); /* Check if fuse already blown or not */ if ((last_stored_val & mask) == mask) { return ERROR_ALREADY_BLOWN; } /* Write fuse in mirror registers */ sfp_write32(fuse_addr, last_stored_val | (*fuse_hdr_val & mask)); /* Read back to check if write success */ if (sfp_read32(fuse_addr) != (last_stored_val | (*fuse_hdr_val & mask))) { return ERROR_WRITE; } return 0; } static int write_fuses(uint32_t *fuse_addr, uint32_t *fuse_hdr_val, uint8_t len) { int i; /* Check if fuse already blown or not */ for (i = 0; i < len; i++) { if (sfp_read32(&fuse_addr[i]) != 0) { return ERROR_ALREADY_BLOWN; } } /* Write fuse in mirror registers */ for (i = 0; i < len; i++) { sfp_write32(&fuse_addr[i], fuse_hdr_val[i]); } /* Read back to check if write success */ for (i = 0; i < len; i++) { if (sfp_read32(&fuse_addr[i]) != fuse_hdr_val[i]) { return ERROR_WRITE; } } return 0; } /* * This function program Super Root Key Hash (SRKH) in fuse * registers. */ static int prog_srkh(struct fuse_hdr_t *fuse_hdr, struct sfp_ccsr_regs_t *sfp_ccsr_regs) { int ret = 0; ret = write_fuses(sfp_ccsr_regs->srk_hash, fuse_hdr->srkh, 8); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_SRKH_ALREADY_BLOWN : ERROR_SRKH_WRITE; } return ret; } /* This function program OEMUID[0-4] in fuse registers. */ static int prog_oemuid(struct fuse_hdr_t *fuse_hdr, struct sfp_ccsr_regs_t *sfp_ccsr_regs) { int i, ret = 0; for (i = 0; i < 5; i++) { /* Check OEMUIDx to be blown or not */ if (((fuse_hdr->flags >> (FLAG_OUID0_SHIFT + i)) & 0x1) != 0) { /* Check if OEMUID[i] already blown or not */ ret = write_fuses(&sfp_ccsr_regs->oem_uid[i], &fuse_hdr->oem_uid[i], 1); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_OEMUID_ALREADY_BLOWN : ERROR_OEMUID_WRITE; } } } return ret; } /* This function program DCV[0-1], DRV[0-1] in fuse registers. */ static int prog_debug(struct fuse_hdr_t *fuse_hdr, struct sfp_ccsr_regs_t *sfp_ccsr_regs) { int ret; /* Check DCV to be blown or not */ if (((fuse_hdr->flags >> (FLAG_DCV0_SHIFT)) & 0x3) != 0) { /* Check if DCV[i] already blown or not */ ret = write_fuses(sfp_ccsr_regs->dcv, fuse_hdr->dcv, 2); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_DCV_ALREADY_BLOWN : ERROR_DCV_WRITE; } } /* Check DRV to be blown or not */ if ((((fuse_hdr->flags >> (FLAG_DRV0_SHIFT)) & 0x3)) != 0) { /* Check if DRV[i] already blown or not */ ret = write_fuses(sfp_ccsr_regs->drv, fuse_hdr->drv, 2); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_DRV_ALREADY_BLOWN : ERROR_DRV_WRITE; } else { /* Check for DRV hamming error */ if (sfp_read32((void *)(get_sfp_addr() + SFP_SVHESR_OFFSET)) & SFP_SVHESR_DRV_MASK) { return ERROR_DRV_HAMMING_ERROR; } } } return 0; } /* * Turn a 256-bit random value (32 bytes) into an OTPMK code word * modifying the input data array in place */ static void otpmk_make_code_word_256(uint8_t *otpmk, bool minimal_flag) { int i; uint8_t parity_bit; uint8_t code_bit; if (minimal_flag == true) { /* * Force bits 252, 253, 254 and 255 to 1 * This is because these fuses may have already been blown * and the OTPMK cannot force them back to 0 */ otpmk[252/8] |= (1 << (252%8)); otpmk[253/8] |= (1 << (253%8)); otpmk[254/8] |= (1 << (254%8)); otpmk[255/8] |= (1 << (255%8)); } /* Generate the hamming code for the code word */ parity_bit = 0; code_bit = 0; for (i = 0; i < 256; i += 1) { if ((otpmk[i/8] & (1 << (i%8))) != 0) { parity_bit ^= 1; code_bit ^= i; } } /* Inverting otpmk[code_bit] will cause the otpmk * to become a valid code word (except for overall parity) */ if (code_bit < 252) { otpmk[code_bit/8] ^= (1 << (code_bit % 8)); parity_bit ^= 1; // account for flipping a bit changing parity } else { /* Invert two bits: (code_bit - 4) and 4 * Because we invert two bits, no need to touch the parity bit */ otpmk[(code_bit - 4)/8] ^= (1 << ((code_bit - 4) % 8)); otpmk[4/8] ^= (1 << (4 % 8)); } /* Finally, adjust the overall parity of the otpmk * otpmk bit 0 */ otpmk[0] ^= parity_bit; } /* This function program One Time Programmable Master Key (OTPMK) * in fuse registers. */ static int prog_otpmk(struct fuse_hdr_t *fuse_hdr, struct sfp_ccsr_regs_t *sfp_ccsr_regs) { int ret = 0; uint32_t otpmk_flags; uint32_t otpmk_random[8] __aligned(CACHE_WRITEBACK_GRANULE); otpmk_flags = (fuse_hdr->flags >> (FLAG_OTPMK_SHIFT)) & FLAG_OTPMK_MASK; switch (otpmk_flags) { case PROG_OTPMK_MIN: memset(fuse_hdr->otpmk, 0, sizeof(fuse_hdr->otpmk)); /* Minimal OTPMK value (252-255 bits set to 1) */ fuse_hdr->otpmk[0] |= OTPMK_MIM_BITS_MASK; break; case PROG_OTPMK_RANDOM: if (is_sec_enabled() == false) { ret = ERROR_OTPMK_SEC_DISABLED; goto out; } /* Generate Random number using CAAM for OTPMK */ memset(otpmk_random, 0, sizeof(otpmk_random)); if (get_rand_bytes_hw((uint8_t *)otpmk_random, sizeof(otpmk_random)) != 0) { ret = ERROR_OTPMK_SEC_ERROR; goto out; } /* Run hamming over random no. to make OTPMK */ otpmk_make_code_word_256((uint8_t *)otpmk_random, false); /* Swap OTPMK */ fuse_hdr->otpmk[0] = otpmk_random[7]; fuse_hdr->otpmk[1] = otpmk_random[6]; fuse_hdr->otpmk[2] = otpmk_random[5]; fuse_hdr->otpmk[3] = otpmk_random[4]; fuse_hdr->otpmk[4] = otpmk_random[3]; fuse_hdr->otpmk[5] = otpmk_random[2]; fuse_hdr->otpmk[6] = otpmk_random[1]; fuse_hdr->otpmk[7] = otpmk_random[0]; break; case PROG_OTPMK_USER: break; case PROG_OTPMK_RANDOM_MIN: /* Here assumption is that user is aware of minimal OTPMK * already blown. */ /* Generate Random number using CAAM for OTPMK */ if (is_sec_enabled() == false) { ret = ERROR_OTPMK_SEC_DISABLED; goto out; } memset(otpmk_random, 0, sizeof(otpmk_random)); if (get_rand_bytes_hw((uint8_t *)otpmk_random, sizeof(otpmk_random)) != 0) { ret = ERROR_OTPMK_SEC_ERROR; goto out; } /* Run hamming over random no. to make OTPMK */ otpmk_make_code_word_256((uint8_t *)otpmk_random, true); /* Swap OTPMK */ fuse_hdr->otpmk[0] = otpmk_random[7]; fuse_hdr->otpmk[1] = otpmk_random[6]; fuse_hdr->otpmk[2] = otpmk_random[5]; fuse_hdr->otpmk[3] = otpmk_random[4]; fuse_hdr->otpmk[4] = otpmk_random[3]; fuse_hdr->otpmk[5] = otpmk_random[2]; fuse_hdr->otpmk[6] = otpmk_random[1]; fuse_hdr->otpmk[7] = otpmk_random[0]; break; case PROG_OTPMK_USER_MIN: /* * Here assumption is that user is aware of minimal OTPMK * already blown. Check if minimal bits are set in user * supplied OTPMK. */ if ((fuse_hdr->otpmk[0] & OTPMK_MIM_BITS_MASK) != OTPMK_MIM_BITS_MASK) { ret = ERROR_OTPMK_USER_MIN; goto out; } break; default: ret = 0; goto out; } ret = write_fuses(sfp_ccsr_regs->otpmk, fuse_hdr->otpmk, 8); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_OTPMK_ALREADY_BLOWN : ERROR_OTPMK_WRITE; } else { /* Check for DRV hamming error */ if ((sfp_read32((void *)(get_sfp_addr() + SFP_SVHESR_OFFSET)) & SFP_SVHESR_OTPMK_MASK) != 0) { ret = ERROR_OTPMK_HAMMING_ERROR; } } out: return ret; } /* This function program OSPR1 in fuse registers. */ static int prog_ospr1(struct fuse_hdr_t *fuse_hdr, struct sfp_ccsr_regs_t *sfp_ccsr_regs) { int ret; uint32_t mask; #ifdef NXP_SFP_VER_3_4 if (((fuse_hdr->flags >> FLAG_MC_SHIFT) & 0x1) != 0) { mask = OSPR1_MC_MASK; } #endif if (((fuse_hdr->flags >> FLAG_DBG_LVL_SHIFT) & 0x1) != 0) { mask = mask | OSPR1_DBG_LVL_MASK; } ret = write_a_fuse(&sfp_ccsr_regs->ospr1, &fuse_hdr->ospr1, mask); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_OSPR1_ALREADY_BLOWN : ERROR_OSPR1_WRITE; } return ret; } /* This function program SYSCFG in fuse registers. */ static int prog_syscfg(struct fuse_hdr_t *fuse_hdr, struct sfp_ccsr_regs_t *sfp_ccsr_regs) { int ret; /* Check if SYSCFG already blown or not */ ret = write_a_fuse(&sfp_ccsr_regs->ospr, &fuse_hdr->sc, OSPR0_SC_MASK); if (ret != 0) { ret = (ret == ERROR_ALREADY_BLOWN) ? ERROR_SC_ALREADY_BLOWN : ERROR_SC_WRITE; } return ret; } /* This function does fuse provisioning. */ int provision_fuses(unsigned long long fuse_scr_addr, bool en_povdd_status) { struct fuse_hdr_t *fuse_hdr = NULL; struct sfp_ccsr_regs_t *sfp_ccsr_regs = (void *)(get_sfp_addr() + SFP_FUSE_REGS_OFFSET); int ret = 0; fuse_hdr = (struct fuse_hdr_t *)fuse_scr_addr; /* * Check for Write Protect (WP) fuse. If blown then do * no fuse provisioning. */ if ((sfp_read32(&sfp_ccsr_regs->ospr) & 0x1) != 0) { goto out; } /* Check if SRKH to be blown or not */ if (((fuse_hdr->flags >> FLAG_SRKH_SHIFT) & 0x1) != 0) { INFO("Fuse: Program SRKH\n"); ret = prog_srkh(fuse_hdr, sfp_ccsr_regs); if (ret != 0) { error_handler(ret); goto out; } } /* Check if OEMUID to be blown or not */ if (((fuse_hdr->flags >> FLAG_OUID0_SHIFT) & FLAG_OUID_MASK) != 0) { INFO("Fuse: Program OEMUIDs\n"); ret = prog_oemuid(fuse_hdr, sfp_ccsr_regs); if (ret != 0) { error_handler(ret); goto out; } } /* Check if Debug values to be blown or not */ if (((fuse_hdr->flags >> FLAG_DCV0_SHIFT) & FLAG_DEBUG_MASK) != 0) { INFO("Fuse: Program Debug values\n"); ret = prog_debug(fuse_hdr, sfp_ccsr_regs); if (ret != 0) { error_handler(ret); goto out; } } /* Check if OTPMK values to be blown or not */ if (((fuse_hdr->flags >> FLAG_OTPMK_SHIFT) & PROG_NO_OTPMK) != PROG_NO_OTPMK) { INFO("Fuse: Program OTPMK\n"); ret = prog_otpmk(fuse_hdr, sfp_ccsr_regs); if (ret != 0) { error_handler(ret); goto out; } } /* Check if MC or DBG LVL to be blown or not */ if ((((fuse_hdr->flags >> FLAG_MC_SHIFT) & 0x1) != 0) || (((fuse_hdr->flags >> FLAG_DBG_LVL_SHIFT) & 0x1) != 0)) { INFO("Fuse: Program OSPR1\n"); ret = prog_ospr1(fuse_hdr, sfp_ccsr_regs); if (ret != 0) { error_handler(ret); goto out; } } /* Check if SYSCFG to be blown or not */ if (((fuse_hdr->flags >> FLAG_SYSCFG_SHIFT) & 0x1) != 0) { INFO("Fuse: Program SYSCFG\n"); ret = prog_syscfg(fuse_hdr, sfp_ccsr_regs); if (ret != 0) { error_handler(ret); goto out; } } if (en_povdd_status) { ret = sfp_program_fuses(); if (ret != 0) { error_handler(ret); goto out; } } out: return ret; }