/* * Copyright 2018-2021 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #ifdef POLICY_FUSE_PROVISION #include #endif #if TRUSTED_BOARD_BOOT #include #endif #include #include #include #include #include #include #if defined(NXP_SFP_ENABLED) #include #endif #include #ifdef CONFIG_OCRAM_ECC_EN #include #endif #include "plat_common.h" #include "platform_def.h" #include "soc.h" static dcfg_init_info_t dcfg_init_data = { .g_nxp_dcfg_addr = NXP_DCFG_ADDR, .nxp_sysclk_freq = NXP_SYSCLK_FREQ, .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, }; static struct soc_type soc_list[] = { SOC_ENTRY(LS1017AN, LS1017AN, 1, 1), SOC_ENTRY(LS1017AE, LS1017AE, 1, 1), SOC_ENTRY(LS1018AN, LS1018AN, 1, 1), SOC_ENTRY(LS1018AE, LS1018AE, 1, 1), SOC_ENTRY(LS1027AN, LS1027AN, 1, 2), SOC_ENTRY(LS1027AE, LS1027AE, 1, 2), SOC_ENTRY(LS1028AN, LS1028AN, 1, 2), SOC_ENTRY(LS1028AE, LS1028AE, 1, 2), }; CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, assert_invalid_ls1028a_cluster_count); /* * Function returns the base counter frequency * after reading the first entry at CNTFID0 (0x20 offset). * * Function is used by: * 1. ARM common code for PSCI management. * 2. ARM Generic Timer init. * */ unsigned int plat_get_syscnt_freq2(void) { unsigned int counter_base_frequency; /* * Below register specifies the base frequency of the system counter. * As per NXP Board Manuals: * The system counter always works with SYS_REF_CLK/4 frequency clock. */ counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF); return counter_base_frequency; } #ifdef IMAGE_BL2 #ifdef POLICY_FUSE_PROVISION static gpio_init_info_t gpio_init_data = { .gpio1_base_addr = NXP_GPIO1_ADDR, .gpio2_base_addr = NXP_GPIO2_ADDR, .gpio3_base_addr = NXP_GPIO3_ADDR, }; #endif void soc_preload_setup(void) { } void soc_early_init(void) { uint8_t num_clusters, cores_per_cluster; #ifdef CONFIG_OCRAM_ECC_EN ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE); #endif dcfg_init(&dcfg_init_data); enable_timer_base_to_cluster(NXP_PMU_ADDR); enable_core_tb(NXP_PMU_ADDR); dram_regions_info_t *dram_regions_info = get_dram_regions_info(); #ifdef POLICY_FUSE_PROVISION gpio_init(&gpio_init_data); sec_init(NXP_CAAM_ADDR); #endif #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif enum boot_device dev = get_boot_dev(); /* * Mark the buffer for SD in OCRAM as non secure. * The buffer is assumed to be at end of OCRAM for * the logic below to calculate TZPC programming */ if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) { /* * Calculate the region in OCRAM which is secure * The buffer for SD needs to be marked non-secure * to allow SD to do DMA operations on it */ uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE); uint32_t mask = secure_region/TZPC_BLOCK_SIZE; mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask); /* Add the entry for buffer in MMU Table */ mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS); } #if TRUSTED_BOARD_BOOT uint32_t mode; sfp_init(NXP_SFP_ADDR); /* * For secure boot disable SMMU. * Later when platform security policy comes in picture, * this might get modified based on the policy */ if (check_boot_mode_secure(&mode) == true) { bypass_smmu(NXP_SMMU_ADDR); } /* * For Mbedtls currently crypto is not supported via CAAM * enable it when that support is there. In tbbr.mk * the CAAM_INTEG is set as 0. */ #ifndef MBEDTLS_X509 /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled()) { sec_init(NXP_CAAM_ADDR); } else { INFO("SEC is disabled.\n"); } #endif #endif /* Set eDDRTQ for DDR performance */ scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f); soc_errata(); /* * Initialize Interconnect for this cluster during cold boot. * No need for locks as no other CPU is active. */ cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); /* * Enable Interconnect coherency for the primary CPU's cluster. */ get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); plat_ls_interconnect_enter_coherency(num_clusters); delay_timer_init(NXP_TIMER_ADDR); i2c_init(NXP_I2C_ADDR); dram_regions_info->total_dram_size = init_ddr(); } void soc_bl2_prepare_exit(void) { #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) set_sfp_wr_disable(); #endif } /* * This function returns the boot device based on RCW_SRC */ enum boot_device get_boot_dev(void) { enum boot_device src = BOOT_DEVICE_NONE; uint32_t porsr1; uint32_t rcw_src; porsr1 = read_reg_porsr1(); rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; switch (rcw_src) { case FLEXSPI_NOR: src = BOOT_DEVICE_FLEXSPI_NOR; INFO("RCW BOOT SRC is FLEXSPI NOR\n"); break; case FLEXSPI_NAND2K_VAL: case FLEXSPI_NAND4K_VAL: INFO("RCW BOOT SRC is FLEXSPI NAND\n"); src = BOOT_DEVICE_FLEXSPI_NAND; break; case SDHC1_VAL: src = BOOT_DEVICE_EMMC; INFO("RCW BOOT SRC is SD\n"); break; case SDHC2_VAL: src = BOOT_DEVICE_SDHC2_EMMC; INFO("RCW BOOT SRC is EMMC\n"); break; default: break; } return src; } /* * This function sets up access permissions on memory regions ****************************************************************************/ void soc_mem_access(void) { dram_regions_info_t *info_dram_regions = get_dram_regions_info(); struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; int dram_idx = 0; /* index 0 is reserved for region-0 */ int index = 1; for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions; dram_idx++) { if (info_dram_regions->region[dram_idx].size == 0) { ERROR("DDR init failure, or"); ERROR("DRAM regions not populated correctly.\n"); break; } index = populate_tzc400_reg_list(tzc400_reg_list, dram_idx, index, info_dram_regions->region[dram_idx].addr, info_dram_regions->region[dram_idx].size, NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); } mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list); } #else static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2]; /* * This function dynamically constructs the topology according to * SoC Flavor and returns it. */ const unsigned char *plat_get_power_domain_tree_desc(void) { uint8_t num_clusters, cores_per_cluster; unsigned int i; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); /* * The highest level is the system level. The next level is constituted * by clusters and then cores in clusters. */ _power_domain_tree_desc[0] = 1; _power_domain_tree_desc[1] = num_clusters; for (i = 0; i < _power_domain_tree_desc[1]; i++) _power_domain_tree_desc[i + 2] = cores_per_cluster; return _power_domain_tree_desc; } /* * This function returns the core count within the cluster corresponding to * `mpidr`. */ unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return num_clusters; } void soc_early_platform_setup2(void) { dcfg_init(&dcfg_init_data); /* Initialize system level generic timer for Socs */ delay_timer_init(NXP_TIMER_ADDR); #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif } void soc_platform_setup(void) { /* Initialize the GIC driver, cpu and distributor interfaces */ static uintptr_t target_mask_array[PLATFORM_CORE_COUNT]; static interrupt_prop_t ls_interrupt_props[] = { PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S), PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0) }; plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR, PLATFORM_CORE_COUNT, ls_interrupt_props, ARRAY_SIZE(ls_interrupt_props), target_mask_array, plat_core_pos); plat_ls_gic_init(); enable_init_timer(); } /* This function initializes the soc from the BL31 module */ void soc_init(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); /* Low-level init of the soc */ soc_init_lowlevel(); _init_global_data(); soc_init_percpu(); _initialize_psci(); /* * Initialize Interconnect for this cluster during cold boot. * No need for locks as no other CPU is active. */ cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); /* Enable Interconnect coherency for the primary CPU's cluster. */ plat_ls_interconnect_enter_coherency(num_clusters); /* Set platform security policies */ _set_platform_security(); /* Init SEC Engine which will be used by SiP */ if (is_sec_enabled()) { sec_init(NXP_CAAM_ADDR); } else { INFO("SEC is disabled.\n"); } } #ifdef NXP_WDOG_RESTART static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { uint8_t data = WDOG_RESET_FLAG; wr_nv_app_data(WDT_RESET_FLAG_OFFSET, (uint8_t *)&data, sizeof(data)); mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT); return 0; } #endif void soc_runtime_setup(void) { #ifdef NXP_WDOG_RESTART request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler); #endif } /* This function returns the total number of cores in the SoC. */ unsigned int get_tot_num_cores(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return (num_clusters * cores_per_cluster); } /* This function returns the PMU IDLE Cluster mask. */ unsigned int get_pmu_idle_cluster_mask(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return ((1 << num_clusters) - 2); } /* This function returns the PMU Flush Cluster mask. */ unsigned int get_pmu_flush_cluster_mask(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return ((1 << num_clusters) - 2); } /* This function returns the PMU idle core mask. */ unsigned int get_pmu_idle_core_mask(void) { return ((1 << get_tot_num_cores()) - 2); } /* Function to return the SoC SYS CLK */ unsigned int get_sys_clk(void) { return NXP_SYSCLK_FREQ; } #endif