/* * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include /****************************************************************************** * The following functions are defined as weak to allow a platform to override * the way the GICv3 driver is initialised and used. *****************************************************************************/ #pragma weak plat_arm_gic_driver_init #pragma weak plat_arm_gic_init #pragma weak plat_arm_gic_cpuif_enable #pragma weak plat_arm_gic_cpuif_disable #pragma weak plat_arm_gic_pcpu_init #pragma weak plat_arm_gic_redistif_on #pragma weak plat_arm_gic_redistif_off /* The GICv3 driver only needs to be initialized in EL3 */ static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT]; static const interrupt_prop_t arm_interrupt_props[] = { PLAT_ARM_G1S_IRQ_PROPS(INTR_GROUP1S), PLAT_ARM_G0_IRQ_PROPS(INTR_GROUP0) }; /* * We save and restore the GICv3 context on system suspend. Allocate the * data in the designated EL3 Secure carve-out memory. The `volatile` * is used to prevent the compiler from removing the gicv3 contexts even * though the DEFINE_LOAD_SYM_ADDR creates a dummy reference to it. */ static volatile gicv3_redist_ctx_t rdist_ctx __section("arm_el3_tzc_dram"); static volatile gicv3_dist_ctx_t dist_ctx __section("arm_el3_tzc_dram"); /* Define accessor function to get reference to the GICv3 context */ DEFINE_LOAD_SYM_ADDR(rdist_ctx) DEFINE_LOAD_SYM_ADDR(dist_ctx) /* * MPIDR hashing function for translating MPIDRs read from GICR_TYPER register * to core position. * * Calculating core position is dependent on MPIDR_EL1.MT bit. However, affinity * values read from GICR_TYPER don't have an MT field. To reuse the same * translation used for CPUs, we insert MT bit read from the PE's MPIDR into * that read from GICR_TYPER. * * Assumptions: * * - All CPUs implemented in the system have MPIDR_EL1.MT bit set; * - No CPUs implemented in the system use affinity level 3. */ static unsigned int arm_gicv3_mpidr_hash(u_register_t mpidr) { mpidr |= (read_mpidr_el1() & MPIDR_MT_MASK); return plat_arm_calc_core_pos(mpidr); } static const gicv3_driver_data_t arm_gic_data __unused = { .gicd_base = PLAT_ARM_GICD_BASE, .gicr_base = 0U, .interrupt_props = arm_interrupt_props, .interrupt_props_num = ARRAY_SIZE(arm_interrupt_props), .rdistif_num = PLATFORM_CORE_COUNT, .rdistif_base_addrs = rdistif_base_addrs, .mpidr_to_core_pos = arm_gicv3_mpidr_hash }; void __init plat_arm_gic_driver_init(void) { /* * The GICv3 driver is initialized in EL3 and does not need * to be initialized again in SEL1. This is because the S-EL1 * can use GIC system registers to manage interrupts and does * not need GIC interface base addresses to be configured. */ #if (!defined(__aarch64__) && defined(IMAGE_BL32)) || \ (defined(__aarch64__) && defined(IMAGE_BL31)) gicv3_driver_init(&arm_gic_data); if (gicv3_rdistif_probe(PLAT_ARM_GICR_BASE) == -1) { ERROR("No GICR base frame found for Primary CPU\n"); panic(); } #endif } /****************************************************************************** * ARM common helper to initialize the GIC. Only invoked by BL31 *****************************************************************************/ void __init plat_arm_gic_init(void) { gicv3_distif_init(); gicv3_rdistif_init(plat_my_core_pos()); gicv3_cpuif_enable(plat_my_core_pos()); } /****************************************************************************** * ARM common helper to enable the GIC CPU interface *****************************************************************************/ void plat_arm_gic_cpuif_enable(void) { gicv3_cpuif_enable(plat_my_core_pos()); } /****************************************************************************** * ARM common helper to disable the GIC CPU interface *****************************************************************************/ void plat_arm_gic_cpuif_disable(void) { gicv3_cpuif_disable(plat_my_core_pos()); } /****************************************************************************** * ARM common helper function to iterate over all GICR frames and discover the * corresponding per-cpu redistributor frame as well as initialize the * corresponding interface in GICv3. At the moment, Arm platforms do not have * non-contiguous GICR frames. *****************************************************************************/ void plat_arm_gic_pcpu_init(void) { int result; result = gicv3_rdistif_probe(PLAT_ARM_GICR_BASE); if (result == -1) { ERROR("No GICR base frame found for CPU 0x%lx\n", read_mpidr()); panic(); } gicv3_rdistif_init(plat_my_core_pos()); } /****************************************************************************** * ARM common helpers to power GIC redistributor interface *****************************************************************************/ void plat_arm_gic_redistif_on(void) { gicv3_rdistif_on(plat_my_core_pos()); } void plat_arm_gic_redistif_off(void) { gicv3_rdistif_off(plat_my_core_pos()); } /****************************************************************************** * ARM common helper to save & restore the GICv3 on resume from system suspend *****************************************************************************/ void plat_arm_gic_save(void) { gicv3_redist_ctx_t * const rdist_context = (gicv3_redist_ctx_t *)LOAD_ADDR_OF(rdist_ctx); gicv3_dist_ctx_t * const dist_context = (gicv3_dist_ctx_t *)LOAD_ADDR_OF(dist_ctx); /* * If an ITS is available, save its context before * the Redistributor using: * gicv3_its_save_disable(gits_base, &its_ctx[i]) * Additionally, an implementation-defined sequence may * be required to save the whole ITS state. */ /* * Save the GIC Redistributors and ITS contexts before the * Distributor context. As we only handle SYSTEM SUSPEND API, * we only need to save the context of the CPU that is issuing * the SYSTEM SUSPEND call, i.e. the current CPU. */ gicv3_rdistif_save(plat_my_core_pos(), rdist_context); /* Save the GIC Distributor context */ gicv3_distif_save(dist_context); /* * From here, all the components of the GIC can be safely powered down * as long as there is an alternate way to handle wakeup interrupt * sources. */ } void plat_arm_gic_resume(void) { const gicv3_redist_ctx_t *rdist_context = (gicv3_redist_ctx_t *)LOAD_ADDR_OF(rdist_ctx); const gicv3_dist_ctx_t *dist_context = (gicv3_dist_ctx_t *)LOAD_ADDR_OF(dist_ctx); /* Restore the GIC Distributor context */ gicv3_distif_init_restore(dist_context); /* * Restore the GIC Redistributor and ITS contexts after the * Distributor context. As we only handle SYSTEM SUSPEND API, * we only need to restore the context of the CPU that issued * the SYSTEM SUSPEND call. */ gicv3_rdistif_init_restore(plat_my_core_pos(), rdist_context); /* * If an ITS is available, restore its context after * the Redistributor using: * gicv3_its_restore(gits_base, &its_ctx[i]) * An implementation-defined sequence may be required to * restore the whole ITS state. The ITS must also be * re-enabled after this sequence has been executed. */ }