/* * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../bl1/bl1_private.h" #include "hikey_def.h" #include "hikey_private.h" /* * Declarations of linker defined symbols which will help us find the layout * of trusted RAM */ extern unsigned long __COHERENT_RAM_START__; extern unsigned long __COHERENT_RAM_END__; /* * The next 2 constants identify the extents of the coherent memory region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to * page-aligned addresses. */ #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) /* Data structure which holds the extents of the trusted RAM for BL1 */ static meminfo_t bl1_tzram_layout; enum { BOOT_NORMAL = 0, BOOT_USB_DOWNLOAD, BOOT_UART_DOWNLOAD, }; meminfo_t *bl1_plat_sec_mem_layout(void) { return &bl1_tzram_layout; } #if LOAD_IMAGE_V2 /******************************************************************************* * Function that takes a memory layout into which BL2 has been loaded and * populates a new memory layout for BL2 that ensures that BL1's data sections * resident in secure RAM are not visible to BL2. ******************************************************************************/ void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout, meminfo_t *bl2_mem_layout) { assert(bl1_mem_layout != NULL); assert(bl2_mem_layout != NULL); /* * Cannot remove BL1 RW data from the scope of memory visible to BL2 * like arm platforms because they overlap in hikey */ bl2_mem_layout->total_base = BL2_BASE; bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE; flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t)); } #endif /* LOAD_IMAGE_V2 */ /* * Perform any BL1 specific platform actions. */ void bl1_early_platform_setup(void) { /* Initialize the console to provide early debug support */ console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE); /* Allow BL1 to see the whole Trusted RAM */ bl1_tzram_layout.total_base = BL1_RW_BASE; bl1_tzram_layout.total_size = BL1_RW_SIZE; #if !LOAD_IMAGE_V2 /* Calculate how much RAM BL1 is using and how much remains free */ bl1_tzram_layout.free_base = BL1_RW_BASE; bl1_tzram_layout.free_size = BL1_RW_SIZE; reserve_mem(&bl1_tzram_layout.free_base, &bl1_tzram_layout.free_size, BL1_RAM_BASE, BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ #endif INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT, BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ } /* * Perform the very early platform specific architecture setup here. At the * moment this only does basic initialization. Later architectural setup * (bl1_arch_setup()) does not do anything platform specific. */ void bl1_plat_arch_setup(void) { hikey_init_mmu_el3(bl1_tzram_layout.total_base, bl1_tzram_layout.total_size, BL1_RO_BASE, BL1_RO_LIMIT, BL1_COHERENT_RAM_BASE, BL1_COHERENT_RAM_LIMIT); } static void hikey_sp804_init(void) { uint32_t data; /* select the clock of dual timer0 */ data = mmio_read_32(AO_SC_TIMER_EN0); while (data & 3) { data &= ~3; data |= 3 << 16; mmio_write_32(AO_SC_TIMER_EN0, data); data = mmio_read_32(AO_SC_TIMER_EN0); } /* enable the pclk of dual timer0 */ data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4); while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) { mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0); data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4); } /* reset dual timer0 */ data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0); do { data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); } while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)); /* unreset dual timer0 */ mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0); do { data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); } while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0)); sp804_timer_init(SP804_TIMER0_BASE, 10, 192); } static void hikey_gpio_init(void) { pl061_gpio_init(); pl061_gpio_register(GPIO0_BASE, 0); pl061_gpio_register(GPIO1_BASE, 1); pl061_gpio_register(GPIO2_BASE, 2); pl061_gpio_register(GPIO3_BASE, 3); pl061_gpio_register(GPIO4_BASE, 4); pl061_gpio_register(GPIO5_BASE, 5); pl061_gpio_register(GPIO6_BASE, 6); pl061_gpio_register(GPIO7_BASE, 7); pl061_gpio_register(GPIO8_BASE, 8); pl061_gpio_register(GPIO9_BASE, 9); pl061_gpio_register(GPIO10_BASE, 10); pl061_gpio_register(GPIO11_BASE, 11); pl061_gpio_register(GPIO12_BASE, 12); pl061_gpio_register(GPIO13_BASE, 13); pl061_gpio_register(GPIO14_BASE, 14); pl061_gpio_register(GPIO15_BASE, 15); pl061_gpio_register(GPIO16_BASE, 16); pl061_gpio_register(GPIO17_BASE, 17); pl061_gpio_register(GPIO18_BASE, 18); pl061_gpio_register(GPIO19_BASE, 19); /* Power on indicator LED (USER_LED1). */ gpio_set_direction(32, GPIO_DIR_OUT); /* LED1 */ gpio_set_value(32, GPIO_LEVEL_HIGH); gpio_set_direction(33, GPIO_DIR_OUT); /* LED2 */ gpio_set_value(33, GPIO_LEVEL_LOW); gpio_set_direction(34, GPIO_DIR_OUT); /* LED3 */ gpio_set_direction(35, GPIO_DIR_OUT); /* LED4 */ } static void hikey_pmussi_init(void) { uint32_t data; /* Initialize PWR_HOLD GPIO */ gpio_set_direction(0, GPIO_DIR_OUT); gpio_set_value(0, GPIO_LEVEL_LOW); /* * After reset, PMUSSI stays in reset mode. * Now make it out of reset. */ mmio_write_32(AO_SC_PERIPH_RSTDIS4, AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N); do { data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); } while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N); /* Set PMUSSI clock latency for read operation. */ data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3); data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK; data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3; mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data); /* enable PMUSSI clock */ data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU | AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU; mmio_write_32(AO_SC_PERIPH_CLKEN5, data); data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI; mmio_write_32(AO_SC_PERIPH_CLKEN4, data); gpio_set_value(0, GPIO_LEVEL_HIGH); } static void hikey_hi6553_init(void) { uint8_t data; mmio_write_8(HI6553_PERI_EN_MARK, 0x1e); mmio_write_8(HI6553_NP_REG_ADJ1, 0); data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC | DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2; mmio_write_8(HI6553_DISABLE6_XO_CLK, data); /* configure BUCK0 & BUCK1 */ mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e); mmio_write_8(HI6553_BUCK0_CTRL7, 0x10); mmio_write_8(HI6553_BUCK1_CTRL7, 0x10); mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e); mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e); mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc); mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc); /* configure BUCK2 */ mmio_write_8(HI6553_BUCK2_REG1, 0x4f); mmio_write_8(HI6553_BUCK2_REG5, 0x99); mmio_write_8(HI6553_BUCK2_REG6, 0x45); mdelay(1); mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22); mdelay(1); /* configure BUCK3 */ mmio_write_8(HI6553_BUCK3_REG3, 0x02); mmio_write_8(HI6553_BUCK3_REG5, 0x99); mmio_write_8(HI6553_BUCK3_REG6, 0x41); mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02); mdelay(1); /* configure BUCK4 */ mmio_write_8(HI6553_BUCK4_REG2, 0x9a); mmio_write_8(HI6553_BUCK4_REG5, 0x99); mmio_write_8(HI6553_BUCK4_REG6, 0x45); /* configure LDO20 */ mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50); mmio_write_8(HI6553_NP_REG_CHG, 0x0f); mmio_write_8(HI6553_CLK_TOP0, 0x06); mmio_write_8(HI6553_CLK_TOP3, 0xc0); mmio_write_8(HI6553_CLK_TOP4, 0x00); /* configure LDO7 & LDO10 for SD slot */ /* enable LDO7 */ data = mmio_read_8(HI6553_LDO7_REG_ADJ); data = (data & 0xf8) | 0x2; mmio_write_8(HI6553_LDO7_REG_ADJ, data); mdelay(5); mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6); mdelay(5); /* enable LDO10 */ data = mmio_read_8(HI6553_LDO10_REG_ADJ); data = (data & 0xf8) | 0x5; mmio_write_8(HI6553_LDO10_REG_ADJ, data); mdelay(5); mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1); mdelay(5); /* enable LDO15 */ data = mmio_read_8(HI6553_LDO15_REG_ADJ); data = (data & 0xf8) | 0x4; mmio_write_8(HI6553_LDO15_REG_ADJ, data); mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6); mdelay(5); /* enable LDO19 */ data = mmio_read_8(HI6553_LDO19_REG_ADJ); data |= 0x7; mmio_write_8(HI6553_LDO19_REG_ADJ, data); mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2); mdelay(5); /* enable LDO21 */ data = mmio_read_8(HI6553_LDO21_REG_ADJ); data = (data & 0xf8) | 0x3; mmio_write_8(HI6553_LDO21_REG_ADJ, data); mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4); mdelay(5); /* enable LDO22 */ data = mmio_read_8(HI6553_LDO22_REG_ADJ); data = (data & 0xf8) | 0x7; mmio_write_8(HI6553_LDO22_REG_ADJ, data); mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5); mdelay(5); /* select 32.764KHz */ mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01); /* Disable vbus_det interrupts */ data = mmio_read_8(HI6553_IRQ2_MASK); data = data | 0x3; mmio_write_8(HI6553_IRQ2_MASK, data); } static void init_mmc0_pll(void) { unsigned int data; /* select SYSPLL as the source of MMC0 */ /* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */ mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21); do { data = mmio_read_32(PERI_SC_CLK_SEL0); } while (!(data & (1 << 5))); /* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */ mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29); do { data = mmio_read_32(PERI_SC_CLK_SEL0); } while (data & (1 << 13)); mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0)); do { data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); } while (!(data & (1 << 0))); data = mmio_read_32(PERI_SC_PERIPH_CLKEN12); data |= 1 << 1; mmio_write_32(PERI_SC_PERIPH_CLKEN12, data); do { mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb); data = mmio_read_32(PERI_SC_CLKCFG8BIT1); } while ((data & 0xb) != 0xb); } static void reset_mmc0_clk(void) { unsigned int data; /* disable mmc0 bus clock */ mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0); do { data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); } while (data & PERI_CLK0_MMC0); /* enable mmc0 bus clock */ mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0); do { data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); } while (!(data & PERI_CLK0_MMC0)); /* reset mmc0 clock domain */ mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0); /* bypass mmc0 clock phase */ data = mmio_read_32(PERI_SC_PERIPH_CTRL2); data |= 3; mmio_write_32(PERI_SC_PERIPH_CTRL2, data); /* disable low power */ data = mmio_read_32(PERI_SC_PERIPH_CTRL13); data |= 1 << 3; mmio_write_32(PERI_SC_PERIPH_CTRL13, data); do { data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); } while (!(data & PERI_RST0_MMC0)); /* unreset mmc0 clock domain */ mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0); do { data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); } while (data & PERI_RST0_MMC0); } static void init_media_clk(void) { unsigned int data, value; data = mmio_read_32(PMCTRL_MEDPLLCTRL); data |= 1; mmio_write_32(PMCTRL_MEDPLLCTRL, data); for (;;) { data = mmio_read_32(PMCTRL_MEDPLLCTRL); value = 1 << 28; if ((data & value) == value) break; } data = mmio_read_32(PERI_SC_PERIPH_CLKEN12); data = 1 << 10; mmio_write_32(PERI_SC_PERIPH_CLKEN12, data); } static void init_mmc1_pll(void) { uint32_t data; /* select SYSPLL as the source of MMC1 */ /* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */ mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27); do { data = mmio_read_32(PERI_SC_CLK_SEL0); } while (!(data & (1 << 11))); /* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */ mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30); do { data = mmio_read_32(PERI_SC_CLK_SEL0); } while (data & (1 << 14)); mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1)); do { data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); } while (!(data & (1 << 1))); data = mmio_read_32(PERI_SC_PERIPH_CLKEN12); data |= 1 << 2; mmio_write_32(PERI_SC_PERIPH_CLKEN12, data); do { /* 1.2GHz / 50 = 24MHz */ mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7)); data = mmio_read_32(PERI_SC_CLKCFG8BIT2); } while ((data & 0x31) != 0x31); } static void reset_mmc1_clk(void) { unsigned int data; /* disable mmc1 bus clock */ mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1); do { data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); } while (data & PERI_CLK0_MMC1); /* enable mmc1 bus clock */ mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1); do { data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); } while (!(data & PERI_CLK0_MMC1)); /* reset mmc1 clock domain */ mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1); /* bypass mmc1 clock phase */ data = mmio_read_32(PERI_SC_PERIPH_CTRL2); data |= 3 << 2; mmio_write_32(PERI_SC_PERIPH_CTRL2, data); /* disable low power */ data = mmio_read_32(PERI_SC_PERIPH_CTRL13); data |= 1 << 4; mmio_write_32(PERI_SC_PERIPH_CTRL13, data); do { data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); } while (!(data & PERI_RST0_MMC1)); /* unreset mmc0 clock domain */ mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1); do { data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); } while (data & PERI_RST0_MMC1); } /* Initialize PLL of both eMMC and SD controllers. */ static void hikey_mmc_pll_init(void) { init_mmc0_pll(); reset_mmc0_clk(); init_media_clk(); dsb(); init_mmc1_pll(); reset_mmc1_clk(); } static void hikey_rtc_init(void) { uint32_t data; data = mmio_read_32(AO_SC_PERIPH_CLKEN4); data |= AO_SC_PERIPH_RSTDIS4_RESET_RTC0_N; mmio_write_32(AO_SC_PERIPH_CLKEN4, data); } /* * Function which will perform any remaining platform-specific setup that can * occur after the MMU and data cache have been enabled. */ void bl1_platform_setup(void) { dw_mmc_params_t params; assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) && ((SRAM_BASE + SRAM_SIZE) >= (HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE))); hikey_sp804_init(); hikey_gpio_init(); hikey_pmussi_init(); hikey_hi6553_init(); hikey_rtc_init(); hikey_mmc_pll_init(); memset(¶ms, 0, sizeof(dw_mmc_params_t)); params.reg_base = DWMMC0_BASE; params.desc_base = HIKEY_BL1_MMC_DESC_BASE; params.desc_size = 1 << 20; params.clk_rate = 24 * 1000 * 1000; params.bus_width = EMMC_BUS_WIDTH_8; params.flags = EMMC_FLAG_CMD23; dw_mmc_init(¶ms); hikey_io_setup(); } /* * The following function checks if Firmware update is needed, * by checking if TOC in FIP image is valid or not. */ unsigned int bl1_plat_get_next_image_id(void) { int32_t boot_mode; unsigned int ret; boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE); switch (boot_mode) { case BOOT_NORMAL: ret = BL2_IMAGE_ID; break; case BOOT_USB_DOWNLOAD: case BOOT_UART_DOWNLOAD: ret = NS_BL1U_IMAGE_ID; break; default: WARN("Invalid boot mode is found:%d\n", boot_mode); panic(); } return ret; } image_desc_t *bl1_plat_get_image_desc(unsigned int image_id) { unsigned int index = 0; while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) { if (bl1_tbbr_image_descs[index].image_id == image_id) return &bl1_tbbr_image_descs[index]; index++; } return NULL; } void bl1_plat_set_ep_info(unsigned int image_id, entry_point_info_t *ep_info) { unsigned int data = 0; if (image_id == BL2_IMAGE_ID) return; inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE); __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); do { data |= 3 << 20; __asm__ volatile ("msr cpacr_el1, %0" : : "r"(data)); __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); } while ((data & (3 << 20)) != (3 << 20)); INFO("cpacr_el1:0x%x\n", data); ep_info->args.arg0 = 0xffff & read_mpidr(); ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); }