/* * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include /******************************************************************************* * Register offsets for ARI request/results ******************************************************************************/ #define ARI_REQUEST 0x0 #define ARI_REQUEST_EVENT_MASK 0x4 #define ARI_STATUS 0x8 #define ARI_REQUEST_DATA_LO 0xC #define ARI_REQUEST_DATA_HI 0x10 #define ARI_RESPONSE_DATA_LO 0x14 #define ARI_RESPONSE_DATA_HI 0x18 /* Status values for the current request */ #define ARI_REQ_PENDING 1 #define ARI_REQ_ONGOING 3 #define ARI_REQUEST_VALID_BIT (1 << 8) #define ARI_EVT_MASK_STANDBYWFI_BIT (1 << 7) /******************************************************************************* * ARI helper functions ******************************************************************************/ static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg) { return mmio_read_32(ari_base + reg); } static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg) { mmio_write_32(ari_base + reg, val); } static inline uint32_t ari_get_request_low(uint32_t ari_base) { return ari_read_32(ari_base, ARI_REQUEST_DATA_LO); } static inline uint32_t ari_get_request_high(uint32_t ari_base) { return ari_read_32(ari_base, ARI_REQUEST_DATA_HI); } static inline uint32_t ari_get_response_low(uint32_t ari_base) { return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO); } static inline uint32_t ari_get_response_high(uint32_t ari_base) { return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI); } static inline void ari_clobber_response(uint32_t ari_base) { ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO); ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI); } static int ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req, uint32_t lo, uint32_t hi) { int status; /* program the request, event_mask, hi and lo registers */ ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO); ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI); ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK); ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST); /* * For commands that have an event trigger, we should bypass * ARI_STATUS polling, since MCE is waiting for SW to trigger * the event. */ if (evt_mask) return 0; /* NOTE: add timeout check if needed */ status = ari_read_32(ari_base, ARI_STATUS); while (status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) status = ari_read_32(ari_base, ARI_STATUS); return 0; } int ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time) { /* check for allowed power state */ if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 && state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) { ERROR("%s: unknown cstate (%d)\n", __func__, state); return EINVAL; } /* clean the previous response state */ ari_clobber_response(ari_base); /* Enter the cstate, to be woken up after wake_time (TSC ticks) */ return ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT, TEGRA_ARI_ENTER_CSTATE, state, wake_time); } int ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex, uint32_t system, uint8_t sys_state_force, uint32_t wake_mask, uint8_t update_wake_mask) { uint32_t val = 0; /* clean the previous response state */ ari_clobber_response(ari_base); /* update CLUSTER_CSTATE? */ if (cluster) val |= (cluster & CLUSTER_CSTATE_MASK) | CLUSTER_CSTATE_UPDATE_BIT; /* update CCPLEX_CSTATE? */ if (ccplex) val |= (ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT | CCPLEX_CSTATE_UPDATE_BIT; /* update SYSTEM_CSTATE? */ if (system) val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) | ((sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) | SYSTEM_CSTATE_UPDATE_BIT); /* update wake mask value? */ if (update_wake_mask) val |= CSTATE_WAKE_MASK_UPDATE_BIT; /* set the updated cstate info */ return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CSTATE_INFO, val, wake_mask); } int ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time) { /* sanity check crossover type */ if ((type == TEGRA_ARI_CROSSOVER_C1_C6) || (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) return EINVAL; /* clean the previous response state */ ari_clobber_response(ari_base); /* update crossover threshold time */ return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CROSSOVER, type, time); } uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state) { int ret; /* sanity check crossover type */ if (state == 0) return EINVAL; /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0, TEGRA_ARI_CSTATE_STATS, state, 0); if (ret != 0) return EINVAL; return (uint64_t)ari_get_response_low(ari_base); } int ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats) { /* clean the previous response state */ ari_clobber_response(ari_base); /* write the cstate stats */ return ari_request_wait(ari_base, 0, TEGRA_ARI_WRITE_CSTATE_STATS, state, stats); } uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data) { uint64_t resp; int ret; /* clean the previous response state */ ari_clobber_response(ari_base); /* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */ if (cmd != TEGRA_ARI_MISC_ECHO) data = 0; ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MISC, cmd, data); if (ret) return (uint64_t)ret; /* get the command response */ resp = ari_get_response_low(ari_base); resp |= ((uint64_t)ari_get_response_high(ari_base) << 32); return resp; } int ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time) { int ret; /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7, wake_time); if (ret) { ERROR("%s: failed (%d)\n", __func__, ret); return 0; } /* 1 = CCx allowed, 0 = CCx not allowed */ return (ari_get_response_low(ari_base) & 0x1); } int ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time) { int ret; /* check for allowed power state */ if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 && state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) { ERROR("%s: unknown cstate (%d)\n", __func__, state); return EINVAL; } /* clean the previous response state */ ari_clobber_response(ari_base); ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_SC7_ALLOWED, state, wake_time); if (ret) { ERROR("%s: failed (%d)\n", __func__, ret); return 0; } /* 1 = SC7 allowed, 0 = SC7 not allowed */ return !!ari_get_response_low(ari_base); } int ari_online_core(uint32_t ari_base, uint32_t core) { int cpu = read_mpidr() & MPIDR_CPU_MASK; int cluster = (read_mpidr() & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS; int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; /* construct the current CPU # */ cpu |= (cluster << 2); /* sanity check target core id */ if ((core >= MCE_CORE_ID_MAX) || (cpu == core)) { ERROR("%s: unsupported core id (%d)\n", __func__, core); return EINVAL; } /* * The Denver cluster has 2 CPUs only - 0, 1. */ if (impl == DENVER_IMPL && ((core == 2) || (core == 3))) { ERROR("%s: unknown core id (%d)\n", __func__, core); return EINVAL; } /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0, TEGRA_ARI_ONLINE_CORE, core, 0); } int ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable) { int val; /* clean the previous response state */ ari_clobber_response(ari_base); /* * If the enable bit is cleared, Auto-CC3 will be disabled by setting * the SW visible voltage/frequency request registers for all non * floorswept cores valid independent of StandbyWFI and disabling * the IDLE voltage/frequency request register. If set, Auto-CC3 * will be enabled by setting the ARM SW visible voltage/frequency * request registers for all non floorswept cores to be enabled by * StandbyWFI or the equivalent signal, and always keeping the IDLE * voltage/frequency request register enabled. */ val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\ ((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\ (enable ? MCE_AUTO_CC3_ENABLE_BIT : 0)); return ari_request_wait(ari_base, 0, TEGRA_ARI_CC3_CTRL, val, 0); } int ari_reset_vector_update(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); /* * Need to program the CPU reset vector one time during cold boot * and SC7 exit */ ari_request_wait(ari_base, 0, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0, 0); return 0; } int ari_roc_flush_cache_trbits(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS, 0, 0); } int ari_roc_flush_cache(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY, 0, 0); } int ari_roc_clean_cache(uint32_t ari_base) { /* clean the previous response state */ ari_clobber_response(ari_base); return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY, 0, 0); } uint64_t ari_read_write_mca(uint32_t ari_base, mca_cmd_t cmd, uint64_t *data) { mca_arg_t mca_arg; int ret; /* Set data (write) */ mca_arg.data = data ? *data : 0ull; /* Set command */ ari_write_32(ari_base, cmd.input.low, ARI_RESPONSE_DATA_LO); ari_write_32(ari_base, cmd.input.high, ARI_RESPONSE_DATA_HI); ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MCA, mca_arg.arg.low, mca_arg.arg.high); if (!ret) { mca_arg.arg.low = ari_get_response_low(ari_base); mca_arg.arg.high = ari_get_response_high(ari_base); if (!mca_arg.err.finish) return (uint64_t)mca_arg.err.error; if (data) { mca_arg.arg.low = ari_get_request_low(ari_base); mca_arg.arg.high = ari_get_request_high(ari_base); *data = mca_arg.data; } } return 0; } int ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx) { /* sanity check GSC ID */ if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX) return EINVAL; /* clean the previous response state */ ari_clobber_response(ari_base); /* * The MCE code will read the GSC carveout value, corrseponding to * the ID, from the MC registers and update the internal GSC registers * of the CCPLEX. */ ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0); return 0; } void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx) { /* clean the previous response state */ ari_clobber_response(ari_base); /* * The MCE will shutdown or restart the entire system */ (void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, state_idx, 0); } int ari_read_write_uncore_perfmon(uint32_t ari_base, uncore_perfmon_req_t req, uint64_t *data) { int ret; uint32_t val; /* clean the previous response state */ ari_clobber_response(ari_base); /* sanity check input parameters */ if (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_READ && !data) { ERROR("invalid parameters\n"); return EINVAL; } /* * For "write" commands get the value that has to be written * to the uncore perfmon registers */ val = (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_WRITE) ? *data : 0; ret = ari_request_wait(ari_base, 0, TEGRA_ARI_PERFMON, val, req.data); if (ret) return ret; /* read the command status value */ req.perfmon_status.val = ari_get_response_high(ari_base) & UNCORE_PERFMON_RESP_STATUS_MASK; /* * For "read" commands get the data from the uncore * perfmon registers */ if ((req.perfmon_status.val == 0) && (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_READ)) *data = ari_get_response_low(ari_base); return (int)req.perfmon_status.val; } void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value) { /* * This invokes the ARI_MISC_CCPLEX commands. This can be * used to enable/disable coresight clock gating. */ if ((index > TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) || ((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) && (value > 1))) { ERROR("%s: invalid parameters \n", __func__); return; } /* clean the previous response state */ ari_clobber_response(ari_base); (void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, index, value); }