/* * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * Top-level SMC handler for ZynqMP power management calls and * IPI setup functions for communication with PMU. */ #include #include #include #include #include "../zynqmp_private.h" #include "pm_api_sys.h" #include "pm_client.h" #include "pm_ipi.h" #define PM_GET_CALLBACK_DATA 0xa01 /* 0 - UP, !0 - DOWN */ static int32_t pm_down = !0; /** * pm_context - Structure which contains data for power management * @api_version version of PM API, must match with one on PMU side * @payload payload array used to store received * data from ipi buffer registers */ static struct { uint32_t api_version; uint32_t payload[PAYLOAD_ARG_CNT]; } pm_ctx; /** * pm_setup() - PM service setup * * @return On success, the initialization function must return 0. * Any other return value will cause the framework to ignore * the service * * Initialization functions for ZynqMP power management for * communicaton with PMU. * * Called from sip_svc_setup initialization function with the * rt_svc_init signature. */ int pm_setup(void) { int status, ret; if (!zynqmp_is_pmu_up()) return -ENODEV; status = pm_ipi_init(primary_proc); if (status >= 0) { INFO("BL31: PM Service Init Complete: API v%d.%d\n", PM_VERSION_MAJOR, PM_VERSION_MINOR); ret = 0; } else { INFO("BL31: PM Service Init Failed, Error Code %d!\n", status); ret = status; } pm_down = status; return ret; } /** * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. * @smc_fid - Function Identifier * @x1 - x4 - Arguments * @cookie - Unused * @handler - Pointer to caller's context structure * * @return - Unused * * Determines that smc_fid is valid and supported PM SMC Function ID from the * list of pm_api_ids, otherwise completes the request with * the unknown SMC Function ID * * The SMC calls for PM service are forwarded from SIP Service SMC handler * function with rt_svc_handle signature */ uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { enum pm_ret_status ret; uint32_t pm_arg[4]; /* Handle case where PM wasn't initialized properly */ if (pm_down) SMC_RET1(handle, SMC_UNK); pm_arg[0] = (uint32_t)x1; pm_arg[1] = (uint32_t)(x1 >> 32); pm_arg[2] = (uint32_t)x2; pm_arg[3] = (uint32_t)(x2 >> 32); switch (smc_fid & FUNCID_NUM_MASK) { /* PM API Functions */ case PM_SELF_SUSPEND: ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_SUSPEND: ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_WAKEUP: ret = pm_req_wakeup(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_FORCE_POWERDOWN: ret = pm_force_powerdown(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_ABORT_SUSPEND: ret = pm_abort_suspend(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_SET_WAKEUP_SOURCE: ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]); SMC_RET1(handle, (uint64_t)ret); case PM_SYSTEM_SHUTDOWN: ret = pm_system_shutdown(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_NODE: ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_RELEASE_NODE: ret = pm_release_node(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_SET_REQUIREMENT: ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_SET_MAX_LATENCY: ret = pm_set_max_latency(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_GET_API_VERSION: /* Check is PM API version already verified */ if (pm_ctx.api_version == PM_VERSION) { SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | ((uint64_t)PM_VERSION << 32)); } ret = pm_get_api_version(&pm_ctx.api_version); /* * Enable IPI IRQ * assume the rich OS is OK to handle callback IRQs now. * Even if we were wrong, it would not enable the IRQ in * the GIC. */ pm_ipi_irq_enable(primary_proc); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)pm_ctx.api_version << 32)); case PM_SET_CONFIGURATION: ret = pm_set_configuration(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_GET_NODE_STATUS: ret = pm_get_node_status(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_GET_OP_CHARACTERISTIC: { uint32_t result; ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32)); } case PM_REGISTER_NOTIFIER: ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_RESET_ASSERT: ret = pm_reset_assert(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_RESET_GET_STATUS: { uint32_t reset_status; ret = pm_reset_get_status(pm_arg[0], &reset_status); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)reset_status << 32)); } /* PM memory access functions */ case PM_MMIO_WRITE: ret = pm_mmio_write(pm_arg[0], pm_arg[1], pm_arg[2]); SMC_RET1(handle, (uint64_t)ret); case PM_MMIO_READ: { uint32_t value; ret = pm_mmio_read(pm_arg[0], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_FPGA_LOAD: ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_FPGA_GET_STATUS: { uint32_t value; ret = pm_fpga_get_status(&value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_GET_CHIPID: { uint32_t result[2]; ret = pm_get_chipid(result); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32), result[1]); } case PM_GET_CALLBACK_DATA: { uint32_t result[4]; pm_get_callbackdata(result, sizeof(result)); SMC_RET2(handle, (uint64_t)result[0] | ((uint64_t)result[1] << 32), (uint64_t)result[2] | ((uint64_t)result[3] << 32)); } default: WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid); SMC_RET1(handle, SMC_UNK); } }