/* * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void tegra194_cpu_reset_handler(void); extern uint32_t __tegra194_cpu_reset_handler_data, __tegra194_cpu_reset_handler_end; /* TZDRAM offset for saving SMMU context */ #define TEGRA194_SMMU_CTX_OFFSET 16U /* state id mask */ #define TEGRA194_STATE_ID_MASK 0xFU /* constants to get power state's wake time */ #define TEGRA194_WAKE_TIME_MASK 0x0FFFFFF0U #define TEGRA194_WAKE_TIME_SHIFT 4U /* default core wake mask for CPU_SUSPEND */ #define TEGRA194_CORE_WAKE_MASK 0x180cU static struct t19x_psci_percpu_data { uint32_t wake_time; } __aligned(CACHE_WRITEBACK_GRANULE) t19x_percpu_data[PLATFORM_CORE_COUNT]; /* * tegra_fake_system_suspend acts as a boolean var controlling whether * we are going to take fake system suspend code or normal system suspend code * path. This variable is set inside the sip call handlers, when the kernel * requests an SIP call to set the suspend debug flags. */ bool tegra_fake_system_suspend; int32_t tegra_soc_validate_power_state(uint32_t power_state, psci_power_state_t *req_state) { uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA194_STATE_ID_MASK; uint32_t cpu = plat_my_core_pos(); int32_t ret = PSCI_E_SUCCESS; /* save the core wake time (in TSC ticks)*/ t19x_percpu_data[cpu].wake_time = (power_state & TEGRA194_WAKE_TIME_MASK) << TEGRA194_WAKE_TIME_SHIFT; /* * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that * the correct value is read in tegra_soc_pwr_domain_suspend(), which * is called with caches disabled. It is possible to read a stale value * from DRAM in that function, because the L2 cache is not flushed * unless the cluster is entering CC6/CC7. */ clean_dcache_range((uint64_t)&t19x_percpu_data[cpu], sizeof(t19x_percpu_data[cpu])); /* Sanity check the requested state id */ switch (state_id) { case PSTATE_ID_CORE_IDLE: case PSTATE_ID_CORE_POWERDN: /* Core powerdown request */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id; req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id; break; default: ERROR("%s: unsupported state id (%d)\n", __func__, state_id); ret = PSCI_E_INVALID_PARAMS; break; } return ret; } int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state; uint8_t stateid_afflvl0, stateid_afflvl2; plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); uint64_t smmu_ctx_base; uint32_t val; mce_cstate_info_t sc7_cstate_info = { .cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6, .system = (uint32_t)TEGRA_NVG_SYSTEM_SC7, .system_state_force = 1U, .update_wake_mask = 1U, }; uint32_t cpu = plat_my_core_pos(); int32_t ret = 0; /* get the state ID */ pwr_domain_state = target_state->pwr_domain_state; stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] & TEGRA194_STATE_ID_MASK; stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA194_STATE_ID_MASK; if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) || (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) { /* Enter CPU idle/powerdown */ val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ? (uint32_t)TEGRA_NVG_CORE_C6 : (uint32_t)TEGRA_NVG_CORE_C7; ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)val, percpu_data[cpu].wake_time, 0); assert(ret == 0); } else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* save 'Secure Boot' Processor Feature Config Register */ val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG); mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val); /* save SMMU context */ smmu_ctx_base = params_from_bl2->tzdram_base + tegra194_get_smmu_ctx_offset(); tegra_smmu_save_context((uintptr_t)smmu_ctx_base); /* * Suspend SE, RNG1 and PKA1 only on silcon and fpga, * since VDK does not support atomic se ctx save */ if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) { ret = tegra_se_suspend(); assert(ret == 0); } if (!tegra_fake_system_suspend) { /* Prepare for system suspend */ mce_update_cstate_info(&sc7_cstate_info); do { val = (uint32_t)mce_command_handler( (uint32_t)MCE_CMD_IS_SC7_ALLOWED, (uint32_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); } while (val == 0U); /* Instruct the MCE to enter system suspend state */ ret = mce_command_handler( (uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); assert(ret == 0); /* set system suspend state for house-keeping */ tegra194_set_system_suspend_entry(); } } else { ; /* do nothing */ } return PSCI_E_SUCCESS; } /******************************************************************************* * Platform handler to calculate the proper target power level at the * specified affinity level ******************************************************************************/ plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl, const plat_local_state_t *states, uint32_t ncpu) { plat_local_state_t target = *states; int32_t cluster_powerdn = 1; uint32_t core_pos = (uint32_t)read_mpidr() & MPIDR_CPU_MASK; uint32_t num_cpus = ncpu, pos = 0; mce_cstate_info_t cstate_info = { 0 }; /* get the current core's power state */ target = states[core_pos]; /* CPU suspend */ if ((lvl == MPIDR_AFFLVL1) && (target == PSTATE_ID_CORE_POWERDN)) { /* Program default wake mask */ cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } /* CPU off */ if ((lvl == MPIDR_AFFLVL1) && (target == PLAT_MAX_OFF_STATE)) { /* find out the number of ON cpus in the cluster */ do { target = states[pos]; if (target != PLAT_MAX_OFF_STATE) { cluster_powerdn = 0; } --num_cpus; pos++; } while (num_cpus != 0U); /* Enable cluster powerdn from last CPU in the cluster */ if (cluster_powerdn != 0) { /* Enable CC6 */ /* todo */ /* If cluster group needs to be railgated, request CG7 */ /* todo */ /* Turn off wake mask */ cstate_info.update_wake_mask = 1U; mce_update_cstate_info(&cstate_info); } else { /* Turn off wake_mask */ cstate_info.update_wake_mask = 1U; mce_update_cstate_info(&cstate_info); } } /* System Suspend */ if ((lvl == MPIDR_AFFLVL2) || (target == PSTATE_ID_SOC_POWERDN)) { return PSTATE_ID_SOC_POWERDN; } /* default state */ return PSCI_LOCAL_STATE_RUN; } int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state = target_state->pwr_domain_state; plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA194_STATE_ID_MASK; uint64_t val; u_register_t ns_sctlr_el1; if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* * The TZRAM loses power when we enter system suspend. To * allow graceful exit from system suspend, we need to copy * BL3-1 over to TZDRAM. */ val = params_from_bl2->tzdram_base + tegra194_get_cpu_reset_handler_size(); memcpy((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE, (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE); /* * In fake suspend mode, ensure that the loopback procedure * towards system suspend exit is started, instead of calling * WFI. This is done by disabling both MMU's of EL1 & El3 * and calling tegra_secure_entrypoint(). */ if (tegra_fake_system_suspend) { /* * Disable EL1's MMU. */ ns_sctlr_el1 = read_sctlr_el1(); ns_sctlr_el1 &= (~((u_register_t)SCTLR_M_BIT)); write_sctlr_el1(ns_sctlr_el1); /* * Disable MMU to power up the CPU in a "clean" * state */ disable_mmu_el3(); tegra_secure_entrypoint(); panic(); } } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_on(u_register_t mpidr) { uint64_t target_cpu = mpidr & MPIDR_CPU_MASK; uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS; int32_t ret = 0; if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) { ERROR("%s: unsupported CPU (0x%lx)\n", __func__ , mpidr); return PSCI_E_NOT_PRESENT; } /* construct the target CPU # */ target_cpu += (target_cluster << 1U); ret = mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U); if (ret < 0) { return PSCI_E_DENIED; } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state) { uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL]; /* * Reset power state info for CPUs when onlining, we set * deepest power when offlining a core but that may not be * requested by non-secure sw which controls idle states. It * will re-init this info from non-secure software when the * core come online. */ /* * Check if we are exiting from deep sleep and restore SE * context if we are. */ if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* Init SMMU */ tegra_smmu_init(); /* Resume SE, RNG1 and PKA1 */ tegra_se_resume(); /* * Reset power state info for the last core doing SC7 * entry and exit, we set deepest power state as CC7 * and SC7 for SC7 entry which may not be requested by * non-secure SW which controls idle states. */ } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state) { uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; int32_t ret = 0; (void)target_state; /* Disable Denver's DCO operations */ if (impl == DENVER_IMPL) { denver_disable_dco(); } /* Turn off CPU */ ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); assert(ret == 0); return PSCI_E_SUCCESS; } __dead2 void tegra_soc_prepare_system_off(void) { /* System power off */ /* SC8 */ wfi(); /* wait for the system to power down */ for (;;) { ; } } int32_t tegra_soc_prepare_system_reset(void) { return PSCI_E_SUCCESS; }