/* * Copyright (c) 2015-2022, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IO devices */ uintptr_t fip_dev_handle; uintptr_t storage_dev_handle; static const io_dev_connector_t *fip_dev_con; #if STM32MP_SDMMC || STM32MP_EMMC static struct mmc_device_info mmc_info; static uint32_t block_buffer[MMC_BLOCK_SIZE] __aligned(MMC_BLOCK_SIZE); static io_block_dev_spec_t mmc_block_dev_spec = { /* It's used as temp buffer in block driver */ .buffer = { .offset = (size_t)&block_buffer, .length = MMC_BLOCK_SIZE, }, .ops = { .read = mmc_read_blocks, .write = NULL, }, .block_size = MMC_BLOCK_SIZE, }; static const io_dev_connector_t *mmc_dev_con; #endif /* STM32MP_SDMMC || STM32MP_EMMC */ #if STM32MP_SPI_NOR static io_mtd_dev_spec_t spi_nor_dev_spec = { .ops = { .init = spi_nor_init, .read = spi_nor_read, }, }; #endif #if STM32MP_RAW_NAND static io_mtd_dev_spec_t nand_dev_spec = { .ops = { .init = nand_raw_init, .read = nand_read, .seek = nand_seek_bb }, }; static const io_dev_connector_t *nand_dev_con; #endif #if STM32MP_SPI_NAND static io_mtd_dev_spec_t spi_nand_dev_spec = { .ops = { .init = spi_nand_init, .read = nand_read, .seek = nand_seek_bb }, }; #endif #if STM32MP_SPI_NAND || STM32MP_SPI_NOR static const io_dev_connector_t *spi_dev_con; #endif #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER static const io_dev_connector_t *memmap_dev_con; #endif io_block_spec_t image_block_spec = { .offset = 0U, .length = 0U, }; int open_fip(const uintptr_t spec) { return io_dev_init(fip_dev_handle, (uintptr_t)FIP_IMAGE_ID); } int open_storage(const uintptr_t spec) { return io_dev_init(storage_dev_handle, 0); } static void print_boot_device(boot_api_context_t *boot_context) { switch (boot_context->boot_interface_selected) { case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_SD: INFO("Using SDMMC\n"); break; case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_EMMC: INFO("Using EMMC\n"); break; case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NOR_QSPI: INFO("Using QSPI NOR\n"); break; case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_FMC: INFO("Using FMC NAND\n"); break; case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_QSPI: INFO("Using SPI NAND\n"); break; case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART: INFO("Using UART\n"); break; case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB: INFO("Using USB\n"); break; default: ERROR("Boot interface %u not found\n", boot_context->boot_interface_selected); panic(); break; } if (boot_context->boot_interface_instance != 0U) { INFO(" Instance %d\n", boot_context->boot_interface_instance); } } #if STM32MP_SDMMC || STM32MP_EMMC static void boot_mmc(enum mmc_device_type mmc_dev_type, uint16_t boot_interface_instance) { int io_result __unused; struct stm32_sdmmc2_params params; zeromem(¶ms, sizeof(struct stm32_sdmmc2_params)); mmc_info.mmc_dev_type = mmc_dev_type; switch (boot_interface_instance) { case 1: params.reg_base = STM32MP_SDMMC1_BASE; break; case 2: params.reg_base = STM32MP_SDMMC2_BASE; break; case 3: params.reg_base = STM32MP_SDMMC3_BASE; break; default: WARN("SDMMC instance not found, using default\n"); if (mmc_dev_type == MMC_IS_SD) { params.reg_base = STM32MP_SDMMC1_BASE; } else { params.reg_base = STM32MP_SDMMC2_BASE; } break; } params.device_info = &mmc_info; if (stm32_sdmmc2_mmc_init(¶ms) != 0) { ERROR("SDMMC%u init failed\n", boot_interface_instance); panic(); } /* Open MMC as a block device to read GPT table */ io_result = register_io_dev_block(&mmc_dev_con); if (io_result != 0) { panic(); } io_result = io_dev_open(mmc_dev_con, (uintptr_t)&mmc_block_dev_spec, &storage_dev_handle); assert(io_result == 0); } #endif /* STM32MP_SDMMC || STM32MP_EMMC */ #if STM32MP_SPI_NOR static void boot_spi_nor(boot_api_context_t *boot_context) { int io_result __unused; io_result = stm32_qspi_init(); assert(io_result == 0); io_result = register_io_dev_mtd(&spi_dev_con); assert(io_result == 0); /* Open connections to device */ io_result = io_dev_open(spi_dev_con, (uintptr_t)&spi_nor_dev_spec, &storage_dev_handle); assert(io_result == 0); } #endif /* STM32MP_SPI_NOR */ #if STM32MP_RAW_NAND static void boot_fmc2_nand(boot_api_context_t *boot_context) { int io_result __unused; io_result = stm32_fmc2_init(); assert(io_result == 0); /* Register the IO device on this platform */ io_result = register_io_dev_mtd(&nand_dev_con); assert(io_result == 0); /* Open connections to device */ io_result = io_dev_open(nand_dev_con, (uintptr_t)&nand_dev_spec, &storage_dev_handle); assert(io_result == 0); } #endif /* STM32MP_RAW_NAND */ #if STM32MP_SPI_NAND static void boot_spi_nand(boot_api_context_t *boot_context) { int io_result __unused; io_result = stm32_qspi_init(); assert(io_result == 0); io_result = register_io_dev_mtd(&spi_dev_con); assert(io_result == 0); /* Open connections to device */ io_result = io_dev_open(spi_dev_con, (uintptr_t)&spi_nand_dev_spec, &storage_dev_handle); assert(io_result == 0); } #endif /* STM32MP_SPI_NAND */ #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER static void mmap_io_setup(void) { int io_result __unused; io_result = register_io_dev_memmap(&memmap_dev_con); assert(io_result == 0); io_result = io_dev_open(memmap_dev_con, (uintptr_t)NULL, &storage_dev_handle); assert(io_result == 0); } #if STM32MP_UART_PROGRAMMER static void stm32cubeprogrammer_uart(void) { int ret __unused; boot_api_context_t *boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address(); uintptr_t uart_base; uart_base = get_uart_address(boot_context->boot_interface_instance); ret = stm32cubeprog_uart_load(uart_base, DWL_BUFFER_BASE, DWL_BUFFER_SIZE); assert(ret == 0); } #endif #if STM32MP_USB_PROGRAMMER static void stm32cubeprogrammer_usb(void) { int ret __unused; struct usb_handle *pdev; /* Init USB on platform */ pdev = usb_dfu_plat_init(); ret = stm32cubeprog_usb_load(pdev, DWL_BUFFER_BASE, DWL_BUFFER_SIZE); assert(ret == 0); } #endif #endif /* STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER */ void stm32mp_io_setup(void) { int io_result __unused; boot_api_context_t *boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address(); print_boot_device(boot_context); if ((boot_context->boot_partition_used_toboot == 1U) || (boot_context->boot_partition_used_toboot == 2U)) { INFO("Boot used partition fsbl%u\n", boot_context->boot_partition_used_toboot); } io_result = register_io_dev_fip(&fip_dev_con); assert(io_result == 0); io_result = io_dev_open(fip_dev_con, (uintptr_t)NULL, &fip_dev_handle); switch (boot_context->boot_interface_selected) { #if STM32MP_SDMMC case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_SD: dmbsy(); boot_mmc(MMC_IS_SD, boot_context->boot_interface_instance); break; #endif #if STM32MP_EMMC case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_EMMC: dmbsy(); boot_mmc(MMC_IS_EMMC, boot_context->boot_interface_instance); break; #endif #if STM32MP_SPI_NOR case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NOR_QSPI: dmbsy(); boot_spi_nor(boot_context); break; #endif #if STM32MP_RAW_NAND case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_FMC: dmbsy(); boot_fmc2_nand(boot_context); break; #endif #if STM32MP_SPI_NAND case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_QSPI: dmbsy(); boot_spi_nand(boot_context); break; #endif #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER #if STM32MP_UART_PROGRAMMER case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART: #endif #if STM32MP_USB_PROGRAMMER case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB: #endif dmbsy(); mmap_io_setup(); break; #endif default: ERROR("Boot interface %d not supported\n", boot_context->boot_interface_selected); panic(); break; } } int bl2_plat_handle_pre_image_load(unsigned int image_id) { static bool gpt_init_done __unused; uint16_t boot_itf = stm32mp_get_boot_itf_selected(); switch (boot_itf) { #if STM32MP_SDMMC || STM32MP_EMMC case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_SD: case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_EMMC: if (!gpt_init_done) { /* * With FWU Multi Bank feature enabled, the selection of * the image to boot will be done by fwu_init calling the * platform hook, plat_fwu_set_images_source. */ #if !PSA_FWU_SUPPORT const partition_entry_t *entry; partition_init(GPT_IMAGE_ID); entry = get_partition_entry(FIP_IMAGE_NAME); if (entry == NULL) { ERROR("Could NOT find the %s partition!\n", FIP_IMAGE_NAME); return -ENOENT; } image_block_spec.offset = entry->start; image_block_spec.length = entry->length; #endif gpt_init_done = true; } else { bl_mem_params_node_t *bl_mem_params = get_bl_mem_params_node(image_id); mmc_block_dev_spec.buffer.offset = bl_mem_params->image_info.image_base; mmc_block_dev_spec.buffer.length = bl_mem_params->image_info.image_max_size; } break; #endif #if STM32MP_RAW_NAND || STM32MP_SPI_NAND #if STM32MP_RAW_NAND case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_FMC: #endif #if STM32MP_SPI_NAND case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_QSPI: #endif image_block_spec.offset = STM32MP_NAND_FIP_OFFSET; break; #endif #if STM32MP_SPI_NOR case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NOR_QSPI: image_block_spec.offset = STM32MP_NOR_FIP_OFFSET; break; #endif #if STM32MP_UART_PROGRAMMER case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART: if (image_id == FW_CONFIG_ID) { stm32cubeprogrammer_uart(); /* FIP loaded at DWL address */ image_block_spec.offset = DWL_BUFFER_BASE; image_block_spec.length = DWL_BUFFER_SIZE; } break; #endif #if STM32MP_USB_PROGRAMMER case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB: if (image_id == FW_CONFIG_ID) { stm32cubeprogrammer_usb(); /* FIP loaded at DWL address */ image_block_spec.offset = DWL_BUFFER_BASE; image_block_spec.length = DWL_BUFFER_SIZE; } break; #endif default: ERROR("FIP Not found\n"); panic(); } return 0; } /* * Return an IO device handle and specification which can be used to access * an image. Use this to enforce platform load policy. */ int plat_get_image_source(unsigned int image_id, uintptr_t *dev_handle, uintptr_t *image_spec) { int rc; const struct plat_io_policy *policy; policy = FCONF_GET_PROPERTY(stm32mp, io_policies, image_id); rc = policy->check(policy->image_spec); if (rc == 0) { *image_spec = policy->image_spec; *dev_handle = *(policy->dev_handle); } return rc; } #if (STM32MP_SDMMC || STM32MP_EMMC) && PSA_FWU_SUPPORT /* * In each boot in non-trial mode, we set the BKP register to * FWU_MAX_TRIAL_REBOOT, and return the active_index from metadata. * * As long as the update agent didn't update the "accepted" field in metadata * (i.e. we are in trial mode), we select the new active_index. * To avoid infinite boot loop at trial boot we decrement a BKP register. * If this counter is 0: * - an unexpected TAMPER event raised (that resets the BKP registers to 0) * - a power-off occurs before the update agent was able to update the * "accepted' field * - we already boot FWU_MAX_TRIAL_REBOOT times in trial mode. * we select the previous_active_index. */ #define INVALID_BOOT_IDX 0xFFFFFFFF uint32_t plat_fwu_get_boot_idx(void) { /* * Select boot index and update boot counter only once per boot * even if this function is called several times. */ static uint32_t boot_idx = INVALID_BOOT_IDX; const struct fwu_metadata *data; data = fwu_get_metadata(); if (boot_idx == INVALID_BOOT_IDX) { boot_idx = data->active_index; if (fwu_is_trial_run_state()) { if (stm32_get_and_dec_fwu_trial_boot_cnt() == 0U) { WARN("Trial FWU fails %u times\n", FWU_MAX_TRIAL_REBOOT); boot_idx = data->previous_active_index; } } else { stm32_set_max_fwu_trial_boot_cnt(); } } return boot_idx; } static void *stm32_get_image_spec(const uuid_t *img_type_uuid) { unsigned int i; for (i = 0U; i < MAX_NUMBER_IDS; i++) { if ((guidcmp(&policies[i].img_type_guid, img_type_uuid)) == 0) { return (void *)policies[i].image_spec; } } return NULL; } void plat_fwu_set_images_source(const struct fwu_metadata *metadata) { unsigned int i; uint32_t boot_idx; const partition_entry_t *entry; const uuid_t *img_type_uuid, *img_uuid; io_block_spec_t *image_spec; boot_idx = plat_fwu_get_boot_idx(); assert(boot_idx < NR_OF_FW_BANKS); for (i = 0U; i < NR_OF_IMAGES_IN_FW_BANK; i++) { img_type_uuid = &metadata->img_entry[i].img_type_uuid; image_spec = stm32_get_image_spec(img_type_uuid); if (image_spec == NULL) { ERROR("Unable to get image spec for the image in the metadata\n"); panic(); } img_uuid = &metadata->img_entry[i].img_props[boot_idx].img_uuid; entry = get_partition_entry_by_uuid(img_uuid); if (entry == NULL) { ERROR("Unable to find the partition with the uuid mentioned in metadata\n"); panic(); } image_spec->offset = entry->start; image_spec->length = entry->length; } } static int plat_set_image_source(unsigned int image_id, uintptr_t *handle, uintptr_t *image_spec, const char *part_name) { struct plat_io_policy *policy; io_block_spec_t *spec; const partition_entry_t *entry = get_partition_entry(part_name); if (entry == NULL) { ERROR("Unable to find the %s partition\n", part_name); return -ENOENT; } policy = &policies[image_id]; spec = (io_block_spec_t *)policy->image_spec; spec->offset = entry->start; spec->length = entry->length; *image_spec = policy->image_spec; *handle = *policy->dev_handle; return 0; } int plat_fwu_set_metadata_image_source(unsigned int image_id, uintptr_t *handle, uintptr_t *image_spec) { char *part_name; assert((image_id == FWU_METADATA_IMAGE_ID) || (image_id == BKUP_FWU_METADATA_IMAGE_ID)); partition_init(GPT_IMAGE_ID); if (image_id == FWU_METADATA_IMAGE_ID) { part_name = METADATA_PART_1; } else { part_name = METADATA_PART_2; } return plat_set_image_source(image_id, handle, image_spec, part_name); } #endif /* (STM32MP_SDMMC || STM32MP_EMMC) && PSA_FWU_SUPPORT */