/* * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include "xlat_tables_private.h" /* * MMU configuration register values for the active translation context. Used * from the MMU assembly helpers. */ uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX]; /* * Allocate and initialise the default translation context for the BL image * currently executing. */ #if PLAT_RO_XLAT_TABLES REGISTER_XLAT_CONTEXT_RO_BASE_TABLE(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES, PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE, EL_REGIME_INVALID, "xlat_table"); #else REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES, PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE); #endif void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr) { mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); mmap_add_region_ctx(&tf_xlat_ctx, &mm); } void mmap_add(const mmap_region_t *mm) { mmap_add_ctx(&tf_xlat_ctx, mm); } void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, size_t size, unsigned int attr) { mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr); mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, &mm); *base_va = mm.base_va; } void mmap_add_alloc_va(mmap_region_t *mm) { while (mm->granularity != 0U) { assert(mm->base_va == 0U); mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, mm); mm++; } } #if PLAT_XLAT_TABLES_DYNAMIC int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr) { mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm); } int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, size_t size, unsigned int attr) { mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr); int rc = mmap_add_dynamic_region_alloc_va_ctx(&tf_xlat_ctx, &mm); *base_va = mm.base_va; return rc; } int mmap_remove_dynamic_region(uintptr_t base_va, size_t size) { return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx, base_va, size); } #endif /* PLAT_XLAT_TABLES_DYNAMIC */ void __init init_xlat_tables(void) { assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID); unsigned int current_el = xlat_arch_current_el(); if (current_el == 1U) { tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME; } else if (current_el == 2U) { tf_xlat_ctx.xlat_regime = EL2_REGIME; } else { assert(current_el == 3U); tf_xlat_ctx.xlat_regime = EL3_REGIME; } init_xlat_tables_ctx(&tf_xlat_ctx); } int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr) { return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr); } int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr) { return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr); } #if PLAT_RO_XLAT_TABLES /* Change the memory attributes of the descriptors which resolve the address * range that belongs to the translation tables themselves, which are by default * mapped as part of read-write data in the BL image's memory. * * Since the translation tables map themselves via these level 3 (page) * descriptors, any change applied to them with the MMU on would introduce a * chicken and egg problem because of the break-before-make sequence. * Eventually, it would reach the descriptor that resolves the very table it * belongs to and the invalidation (break step) would cause the subsequent write * (make step) to it to generate an MMU fault. Therefore, the MMU is disabled * before making the change. * * No assumption is made about what data this function needs, therefore all the * caches are flushed in order to ensure coherency. A future optimization would * be to only flush the required data to main memory. */ int xlat_make_tables_readonly(void) { assert(tf_xlat_ctx.initialized == true); #ifdef __aarch64__ if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) { disable_mmu_el1(); } else if (tf_xlat_ctx.xlat_regime == EL3_REGIME) { disable_mmu_el3(); } else { assert(tf_xlat_ctx.xlat_regime == EL2_REGIME); return -1; } /* Flush all caches. */ dcsw_op_all(DCCISW); #else /* !__aarch64__ */ assert(tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME); /* On AArch32, we flush the caches before disabling the MMU. The reason * for this is that the dcsw_op_all AArch32 function pushes some * registers onto the stack under the assumption that it is writing to * cache, which is not true with the MMU off. This would result in the * stack becoming corrupted and a wrong/junk value for the LR being * restored at the end of the routine. */ dcsw_op_all(DC_OP_CISW); disable_mmu_secure(); #endif int rc = xlat_change_mem_attributes_ctx(&tf_xlat_ctx, (uintptr_t)tf_xlat_ctx.tables, tf_xlat_ctx.tables_num * XLAT_TABLE_SIZE, MT_RO_DATA | MT_SECURE); #ifdef __aarch64__ if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) { enable_mmu_el1(0U); } else { assert(tf_xlat_ctx.xlat_regime == EL3_REGIME); enable_mmu_el3(0U); } #else /* !__aarch64__ */ enable_mmu_svc_mon(0U); #endif if (rc == 0) { tf_xlat_ctx.readonly_tables = true; } return rc; } #endif /* PLAT_RO_XLAT_TABLES */ /* * If dynamic allocation of new regions is disabled then by the time we call the * function enabling the MMU, we'll have registered all the memory regions to * map for the system's lifetime. Therefore, at this point we know the maximum * physical address that will ever be mapped. * * If dynamic allocation is enabled then we can't make any such assumption * because the maximum physical address could get pushed while adding a new * region. Therefore, in this case we have to assume that the whole address * space size might be mapped. */ #ifdef PLAT_XLAT_TABLES_DYNAMIC #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address #else #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa #endif #ifdef __aarch64__ void enable_mmu_el1(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); enable_mmu_direct_el1(flags); } void enable_mmu_el2(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL2_REGIME); enable_mmu_direct_el2(flags); } void enable_mmu_el3(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL3_REGIME); enable_mmu_direct_el3(flags); } #else /* !__aarch64__ */ void enable_mmu_svc_mon(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL1_EL0_REGIME); enable_mmu_direct_svc_mon(flags); } void enable_mmu_hyp(unsigned int flags) { setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, tf_xlat_ctx.va_max_address, EL2_REGIME); enable_mmu_direct_hyp(flags); } #endif /* __aarch64__ */