/* * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include "psci_private.h" /******************************************************************************* * PSCI frontend api for servicing SMCs. Described in the PSCI spec. ******************************************************************************/ int psci_cpu_on(unsigned long target_cpu, unsigned long entrypoint, unsigned long context_id) { int rc; unsigned int start_afflvl, end_afflvl; entry_point_info_t ep; /* Determine if the cpu exists of not */ rc = psci_validate_mpidr(target_cpu, MPIDR_AFFLVL0); if (rc != PSCI_E_SUCCESS) { return PSCI_E_INVALID_PARAMS; } /* Validate the entrypoint using platform pm_ops */ if (psci_plat_pm_ops->validate_ns_entrypoint) { rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); if (rc != PSCI_E_SUCCESS) { assert(rc == PSCI_E_INVALID_PARAMS); return PSCI_E_INVALID_PARAMS; } } /* * Verify and derive the re-entry information for * the non-secure world from the non-secure state from * where this call originated. */ rc = psci_get_ns_ep_info(&ep, entrypoint, context_id); if (rc != PSCI_E_SUCCESS) return rc; /* * To turn this cpu on, specify which affinity * levels need to be turned on */ start_afflvl = MPIDR_AFFLVL0; end_afflvl = get_max_afflvl(); rc = psci_afflvl_on(target_cpu, &ep, start_afflvl, end_afflvl); return rc; } unsigned int psci_version(void) { return PSCI_MAJOR_VER | PSCI_MINOR_VER; } int psci_cpu_suspend(unsigned int power_state, unsigned long entrypoint, unsigned long context_id) { int rc; unsigned int target_afflvl, pstate_type; entry_point_info_t ep; /* Check SBZ bits in power state are zero */ if (psci_validate_power_state(power_state)) return PSCI_E_INVALID_PARAMS; /* Sanity check the requested state */ target_afflvl = psci_get_pstate_afflvl(power_state); if (target_afflvl > get_max_afflvl()) return PSCI_E_INVALID_PARAMS; /* Validate the power_state using platform pm_ops */ if (psci_plat_pm_ops->validate_power_state) { rc = psci_plat_pm_ops->validate_power_state(power_state); if (rc != PSCI_E_SUCCESS) { assert(rc == PSCI_E_INVALID_PARAMS); return PSCI_E_INVALID_PARAMS; } } /* Validate the entrypoint using platform pm_ops */ if (psci_plat_pm_ops->validate_ns_entrypoint) { rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); if (rc != PSCI_E_SUCCESS) { assert(rc == PSCI_E_INVALID_PARAMS); return PSCI_E_INVALID_PARAMS; } } /* Determine the 'state type' in the 'power_state' parameter */ pstate_type = psci_get_pstate_type(power_state); /* * Ensure that we have a platform specific handler for entering * a standby state. */ if (pstate_type == PSTATE_TYPE_STANDBY) { if (!psci_plat_pm_ops->affinst_standby) return PSCI_E_INVALID_PARAMS; psci_plat_pm_ops->affinst_standby(power_state); return PSCI_E_SUCCESS; } /* * Verify and derive the re-entry information for * the non-secure world from the non-secure state from * where this call originated. */ rc = psci_get_ns_ep_info(&ep, entrypoint, context_id); if (rc != PSCI_E_SUCCESS) return rc; /* Save PSCI power state parameter for the core in suspend context */ psci_set_suspend_power_state(power_state); /* * Do what is needed to enter the power down state. Upon success, * enter the final wfi which will power down this CPU. */ psci_afflvl_suspend(&ep, MPIDR_AFFLVL0, target_afflvl); /* Reset PSCI power state parameter for the core. */ psci_set_suspend_power_state(PSCI_INVALID_DATA); return PSCI_E_SUCCESS; } int psci_cpu_off(void) { int rc; int target_afflvl = get_max_afflvl(); /* * Traverse from the highest to the lowest affinity level. When the * lowest affinity level is hit, all the locks are acquired. State * management is done immediately followed by cpu, cluster ... * ..target_afflvl specific actions as this function unwinds back. */ rc = psci_afflvl_off(MPIDR_AFFLVL0, target_afflvl); /* * The only error cpu_off can return is E_DENIED. So check if that's * indeed the case. */ assert (rc == PSCI_E_DENIED); return rc; } int psci_affinity_info(unsigned long target_affinity, unsigned int lowest_affinity_level) { int rc = PSCI_E_INVALID_PARAMS; unsigned int aff_state; aff_map_node_t *node; if (lowest_affinity_level > get_max_afflvl()) return rc; node = psci_get_aff_map_node(target_affinity, lowest_affinity_level); if (node && (node->state & PSCI_AFF_PRESENT)) { /* * TODO: For affinity levels higher than 0 i.e. cpu, the * state will always be either ON or OFF. Need to investigate * how critical is it to support ON_PENDING here. */ aff_state = psci_get_state(node); /* A suspended cpu is available & on for the OS */ if (aff_state == PSCI_STATE_SUSPEND) { aff_state = PSCI_STATE_ON; } rc = aff_state; } return rc; } int psci_migrate(unsigned long target_cpu) { int rc; unsigned long resident_cpu_mpidr; rc = psci_spd_migrate_info(&resident_cpu_mpidr); if (rc != PSCI_TOS_UP_MIG_CAP) return (rc == PSCI_TOS_NOT_UP_MIG_CAP) ? PSCI_E_DENIED : PSCI_E_NOT_SUPPORTED; /* * Migrate should only be invoked on the CPU where * the Secure OS is resident. */ if (resident_cpu_mpidr != read_mpidr_el1()) return PSCI_E_NOT_PRESENT; /* Check the validity of the specified target cpu */ rc = psci_validate_mpidr(target_cpu, MPIDR_AFFLVL0); if (rc != PSCI_E_SUCCESS) return PSCI_E_INVALID_PARAMS; assert(psci_spd_pm && psci_spd_pm->svc_migrate); rc = psci_spd_pm->svc_migrate(read_mpidr_el1(), target_cpu); assert(rc == PSCI_E_SUCCESS || rc == PSCI_E_INTERN_FAIL); return rc; } int psci_migrate_info_type(void) { unsigned long resident_cpu_mpidr; return psci_spd_migrate_info(&resident_cpu_mpidr); } long psci_migrate_info_up_cpu(void) { unsigned long resident_cpu_mpidr; int rc; /* * Return value of this depends upon what * psci_spd_migrate_info() returns. */ rc = psci_spd_migrate_info(&resident_cpu_mpidr); if (rc != PSCI_TOS_NOT_UP_MIG_CAP && rc != PSCI_TOS_UP_MIG_CAP) return PSCI_E_INVALID_PARAMS; return resident_cpu_mpidr; } int psci_features(unsigned int psci_fid) { uint32_t local_caps = psci_caps; /* Check if it is a 64 bit function */ if (((psci_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_64) local_caps &= PSCI_CAP_64BIT_MASK; /* Check for invalid fid */ if (!(is_std_svc_call(psci_fid) && is_valid_fast_smc(psci_fid) && is_psci_fid(psci_fid))) return PSCI_E_NOT_SUPPORTED; /* Check if the psci fid is supported or not */ if (!(local_caps & define_psci_cap(psci_fid))) return PSCI_E_NOT_SUPPORTED; /* Format the feature flags */ if (psci_fid == PSCI_CPU_SUSPEND_AARCH32 || psci_fid == PSCI_CPU_SUSPEND_AARCH64) { /* * The trusted firmware uses the original power state format * and does not support OS Initiated Mode. */ return (FF_PSTATE_ORIG << FF_PSTATE_SHIFT) | ((!FF_SUPPORTS_OS_INIT_MODE) << FF_MODE_SUPPORT_SHIFT); } /* Return 0 for all other fid's */ return PSCI_E_SUCCESS; } /******************************************************************************* * PSCI top level handler for servicing SMCs. ******************************************************************************/ uint64_t psci_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { if (is_caller_secure(flags)) SMC_RET1(handle, SMC_UNK); /* Check the fid against the capabilities */ if (!(psci_caps & define_psci_cap(smc_fid))) SMC_RET1(handle, SMC_UNK); if (((smc_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_32) { /* 32-bit PSCI function, clear top parameter bits */ x1 = (uint32_t)x1; x2 = (uint32_t)x2; x3 = (uint32_t)x3; switch (smc_fid) { case PSCI_VERSION: SMC_RET1(handle, psci_version()); case PSCI_CPU_OFF: SMC_RET1(handle, psci_cpu_off()); case PSCI_CPU_SUSPEND_AARCH32: SMC_RET1(handle, psci_cpu_suspend(x1, x2, x3)); case PSCI_CPU_ON_AARCH32: SMC_RET1(handle, psci_cpu_on(x1, x2, x3)); case PSCI_AFFINITY_INFO_AARCH32: SMC_RET1(handle, psci_affinity_info(x1, x2)); case PSCI_MIG_AARCH32: SMC_RET1(handle, psci_migrate(x1)); case PSCI_MIG_INFO_TYPE: SMC_RET1(handle, psci_migrate_info_type()); case PSCI_MIG_INFO_UP_CPU_AARCH32: SMC_RET1(handle, psci_migrate_info_up_cpu()); case PSCI_SYSTEM_OFF: psci_system_off(); /* We should never return from psci_system_off() */ case PSCI_SYSTEM_RESET: psci_system_reset(); /* We should never return from psci_system_reset() */ case PSCI_FEATURES: SMC_RET1(handle, psci_features(x1)); default: break; } } else { /* 64-bit PSCI function */ switch (smc_fid) { case PSCI_CPU_SUSPEND_AARCH64: SMC_RET1(handle, psci_cpu_suspend(x1, x2, x3)); case PSCI_CPU_ON_AARCH64: SMC_RET1(handle, psci_cpu_on(x1, x2, x3)); case PSCI_AFFINITY_INFO_AARCH64: SMC_RET1(handle, psci_affinity_info(x1, x2)); case PSCI_MIG_AARCH64: SMC_RET1(handle, psci_migrate(x1)); case PSCI_MIG_INFO_UP_CPU_AARCH64: SMC_RET1(handle, psci_migrate_info_up_cpu()); default: break; } } WARN("Unimplemented PSCI Call: 0x%x \n", smc_fid); SMC_RET1(handle, SMC_UNK); }