/* * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "fvp_def.h" #include "fvp_private.h" /******************************************************************************* * This function does some minimal GICv3 configuration. The Firmware itself does * not fully support GICv3 at this time and relies on GICv2 emulation as * provided by GICv3. This function allows software (like Linux) in later stages * to use full GICv3 features. ******************************************************************************/ void gicv3_cpuif_setup(void) { unsigned int scr_val, val; uintptr_t base; /* * When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep * bit set. In order to allow interrupts to get routed to the CPU we * need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep * to clear (GICv3 Architecture specification 5.4.23). * GICR_WAKER is NOT banked per CPU, compute the correct base address * per CPU. */ base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr()); if (base == (uintptr_t)NULL) { /* No re-distributor base address. This interface cannot be * configured. */ panic(); } val = gicr_read_waker(base); val &= ~WAKER_PS; gicr_write_waker(base, val); dsb(); /* We need to wait for ChildrenAsleep to clear. */ val = gicr_read_waker(base); while (val & WAKER_CA) { val = gicr_read_waker(base); } /* * We need to set SCR_EL3.NS in order to see GICv3 non-secure state. * Restore SCR_EL3.NS again before exit. */ scr_val = read_scr(); write_scr(scr_val | SCR_NS_BIT); isb(); /* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */ /* * By default EL2 and NS-EL1 software should be able to enable GICv3 * System register access without any configuration at EL3. But it turns * out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So * we need to set it here again. In order to do that we need to enable * register access. We leave it enabled as it should be fine and might * prevent problems with later software trying to access GIC System * Registers. */ val = read_icc_sre_el3(); write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE); val = read_icc_sre_el2(); write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE); write_icc_pmr_el1(GIC_PRI_MASK); isb(); /* commite ICC_* changes before setting NS=0 */ /* Restore SCR_EL3 */ write_scr(scr_val); isb(); /* ensure NS=0 takes effect immediately */ } /******************************************************************************* * This function does some minimal GICv3 configuration when cores go * down. ******************************************************************************/ void gicv3_cpuif_deactivate(void) { unsigned int val; uintptr_t base; /* * When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and * wait for GICR_WAKER.ChildrenAsleep to get set. * (GICv3 Architecture specification 5.4.23). * GICR_WAKER is NOT banked per CPU, compute the correct base address * per CPU. */ base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr()); if (base == (uintptr_t)NULL) { /* No re-distributor base address. This interface cannot be * configured. */ panic(); } val = gicr_read_waker(base); val |= WAKER_PS; gicr_write_waker(base, val); dsb(); /* We need to wait for ChildrenAsleep to set. */ val = gicr_read_waker(base); while ((val & WAKER_CA) == 0) { val = gicr_read_waker(base); } } /******************************************************************************* * Enable secure interrupts and use FIQs to route them. Disable legacy bypass * and set the priority mask register to allow all interrupts to trickle in. ******************************************************************************/ void gic_cpuif_setup(unsigned int gicc_base) { unsigned int val; val = gicc_read_iidr(gicc_base); /* * If GICv3 we need to do a bit of additional setup. We want to * allow default GICv2 behaviour but allow the next stage to * enable full gicv3 features. */ if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) { gicv3_cpuif_setup(); } val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; gicc_write_pmr(gicc_base, GIC_PRI_MASK); gicc_write_ctlr(gicc_base, val); } /******************************************************************************* * Place the cpu interface in a state where it can never make a cpu exit wfi as * as result of an asserted interrupt. This is critical for powering down a cpu ******************************************************************************/ void gic_cpuif_deactivate(unsigned int gicc_base) { unsigned int val; /* Disable secure, non-secure interrupts and disable their bypass */ val = gicc_read_ctlr(gicc_base); val &= ~(ENABLE_GRP0 | ENABLE_GRP1); val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; gicc_write_ctlr(gicc_base, val); val = gicc_read_iidr(gicc_base); /* * If GICv3 we need to do a bit of additional setup. Make sure the * RDIST is put to sleep. */ if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) { gicv3_cpuif_deactivate(); } } /******************************************************************************* * Per cpu gic distributor setup which will be done by all cpus after a cold * boot/hotplug. This marks out the secure interrupts & enables them. ******************************************************************************/ void gic_pcpu_distif_setup(unsigned int gicd_base) { gicd_write_igroupr(gicd_base, 0, ~0); gicd_clr_igroupr(gicd_base, IRQ_SEC_PHY_TIMER); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_0); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_1); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_2); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_3); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_4); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_5); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_6); gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_7); gicd_set_ipriorityr(gicd_base, IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY); gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY); gicd_set_isenabler(gicd_base, IRQ_SEC_PHY_TIMER); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_0); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_1); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_2); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_3); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_4); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_5); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_6); gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_7); } /******************************************************************************* * Global gic distributor setup which will be done by the primary cpu after a * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It * then enables the secure GIC distributor interface. ******************************************************************************/ void gic_distif_setup(unsigned int gicd_base) { unsigned int ctr, num_ints, ctlr; /* Disable the distributor before going further */ ctlr = gicd_read_ctlr(gicd_base); ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1); gicd_write_ctlr(gicd_base, ctlr); /* * Mark out non-secure interrupts. Calculate number of * IGROUPR registers to consider. Will be equal to the * number of IT_LINES */ num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK; num_ints++; for (ctr = 0; ctr < num_ints; ctr++) gicd_write_igroupr(gicd_base, ctr << IGROUPR_SHIFT, ~0); /* Configure secure interrupts now */ gicd_clr_igroupr(gicd_base, IRQ_TZ_WDOG); gicd_set_ipriorityr(gicd_base, IRQ_TZ_WDOG, GIC_HIGHEST_SEC_PRIORITY); gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG, platform_get_core_pos(read_mpidr())); gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG); gic_pcpu_distif_setup(gicd_base); gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0); } void gic_setup(void) { gic_cpuif_setup(get_plat_config()->gicc_base); gic_distif_setup(get_plat_config()->gicd_base); } /******************************************************************************* * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. * The interrupt controller knows which pin/line it uses to signal a type of * interrupt. The platform knows which interrupt controller type is being used * in a particular security state e.g. with an ARM GIC, normal world could use * the GICv2 features while the secure world could use GICv3 features and vice * versa. * This function is exported by the platform to let the interrupt management * framework determine for a type of interrupt and security state, which line * should be used in the SCR_EL3 to control its routing to EL3. The interrupt * line is represented as the bit position of the IRQ or FIQ bit in the SCR_EL3. ******************************************************************************/ uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state) { uint32_t gicc_base = get_plat_config()->gicc_base; assert(type == INTR_TYPE_S_EL1 || type == INTR_TYPE_EL3 || type == INTR_TYPE_NS); assert(security_state == NON_SECURE || security_state == SECURE); /* * We ignore the security state parameter under the assumption that * both normal and secure worlds are using ARM GICv2. This parameter * will be used when the secure world starts using GICv3. */ #if FVP_GIC_ARCH == 2 return gicv2_interrupt_type_to_line(gicc_base, type); #else #error "Invalid GIC architecture version specified for FVP port" #endif } #if FVP_GIC_ARCH == 2 /******************************************************************************* * This function returns the type of the highest priority pending interrupt at * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no * interrupt pending. ******************************************************************************/ uint32_t plat_ic_get_pending_interrupt_type(void) { uint32_t id; id = gicc_read_hppir(get_plat_config()->gicc_base); /* Assume that all secure interrupts are S-EL1 interrupts */ if (id < 1022) return INTR_TYPE_S_EL1; if (id == GIC_SPURIOUS_INTERRUPT) return INTR_TYPE_INVAL; return INTR_TYPE_NS; } /******************************************************************************* * This function returns the id of the highest priority pending interrupt at * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no * interrupt pending. ******************************************************************************/ uint32_t plat_ic_get_pending_interrupt_id(void) { uint32_t id, gicc_base; gicc_base = get_plat_config()->gicc_base; id = gicc_read_hppir(gicc_base); if (id < 1022) return id; if (id == 1023) return INTR_ID_UNAVAILABLE; /* * Find out which non-secure interrupt it is under the assumption that * the GICC_CTLR.AckCtl bit is 0. */ return gicc_read_ahppir(gicc_base); } /******************************************************************************* * This functions reads the GIC cpu interface Interrupt Acknowledge register * to start handling the pending interrupt. It returns the contents of the IAR. ******************************************************************************/ uint32_t plat_ic_acknowledge_interrupt(void) { return gicc_read_IAR(get_plat_config()->gicc_base); } /******************************************************************************* * This functions writes the GIC cpu interface End Of Interrupt register with * the passed value to finish handling the active interrupt ******************************************************************************/ void plat_ic_end_of_interrupt(uint32_t id) { gicc_write_EOIR(get_plat_config()->gicc_base, id); return; } /******************************************************************************* * This function returns the type of the interrupt id depending upon the group * this interrupt has been configured under by the interrupt controller i.e. * group0 or group1. ******************************************************************************/ uint32_t plat_ic_get_interrupt_type(uint32_t id) { uint32_t group; group = gicd_get_igroupr(get_plat_config()->gicd_base, id); /* Assume that all secure interrupts are S-EL1 interrupts */ if (group == GRP0) return INTR_TYPE_S_EL1; else return INTR_TYPE_NS; } #else #error "Invalid GIC architecture version specified for FVP port" #endif