/* * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include "../common/gic_common_private.h" #include "gicv3_private.h" static const gicv3_driver_data_t *driver_data; static unsigned int gicv2_compat; /* * Redistributor power operations are weakly bound so that they can be * overridden */ #pragma weak gicv3_rdistif_off #pragma weak gicv3_rdistif_on /******************************************************************************* * This function initialises the ARM GICv3 driver in EL3 with provided platform * inputs. ******************************************************************************/ void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data) { unsigned int gic_version; assert(plat_driver_data); assert(plat_driver_data->gicd_base); assert(plat_driver_data->gicr_base); assert(plat_driver_data->rdistif_num); assert(plat_driver_data->rdistif_base_addrs); assert(IS_IN_EL3()); /* * The platform should provide a list of at least one type of * interrupts */ assert(plat_driver_data->g0_interrupt_array || plat_driver_data->g1s_interrupt_array); /* * If there are no interrupts of a particular type, then the number of * interrupts of that type should be 0 and vice-versa. */ assert(plat_driver_data->g0_interrupt_array ? plat_driver_data->g0_interrupt_num : plat_driver_data->g0_interrupt_num == 0); assert(plat_driver_data->g1s_interrupt_array ? plat_driver_data->g1s_interrupt_num : plat_driver_data->g1s_interrupt_num == 0); /* Check for system register support */ #ifdef AARCH32 assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)); #else assert(read_id_aa64pfr0_el1() & (ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)); #endif /* AARCH32 */ /* The GIC version should be 3.0 */ gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); gic_version >>= PIDR2_ARCH_REV_SHIFT; gic_version &= PIDR2_ARCH_REV_MASK; assert(gic_version == ARCH_REV_GICV3); /* * Find out whether the GIC supports the GICv2 compatibility mode. The * ARE_S bit resets to 0 if supported */ gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base); gicv2_compat >>= CTLR_ARE_S_SHIFT; gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK); /* * Find the base address of each implemented Redistributor interface. * The number of interfaces should be equal to the number of CPUs in the * system. The memory for saving these addresses has to be allocated by * the platform port */ gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs, plat_driver_data->rdistif_num, plat_driver_data->gicr_base, plat_driver_data->mpidr_to_core_pos); driver_data = plat_driver_data; /* * The GIC driver data is initialized by the primary CPU with caches * enabled. When the secondary CPU boots up, it initializes the * GICC/GICR interface with the caches disabled. Hence flush the * driver_data to ensure coherency. This is not required if the * platform has HW_ASSISTED_COHERENCY enabled. */ #if !HW_ASSISTED_COHERENCY flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data)); flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data)); #endif INFO("GICv3 %s legacy support detected." " ARM GICV3 driver initialized in EL3\n", gicv2_compat ? "with" : "without"); } /******************************************************************************* * This function initialises the GIC distributor interface based upon the data * provided by the platform while initialising the driver. ******************************************************************************/ void gicv3_distif_init(void) { unsigned int bitmap = 0; assert(driver_data); assert(driver_data->gicd_base); assert(driver_data->g1s_interrupt_array || driver_data->g0_interrupt_array); assert(IS_IN_EL3()); /* * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring * the ARE_S bit. The Distributor might generate a system error * otherwise. */ gicd_clr_ctlr(driver_data->gicd_base, CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1S_BIT | CTLR_ENABLE_G1NS_BIT, RWP_TRUE); /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ gicd_set_ctlr(driver_data->gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); /* Set the default attribute of all SPIs */ gicv3_spis_configure_defaults(driver_data->gicd_base); /* Configure the G1S SPIs */ if (driver_data->g1s_interrupt_array) { gicv3_secure_spis_configure(driver_data->gicd_base, driver_data->g1s_interrupt_num, driver_data->g1s_interrupt_array, INTR_GROUP1S); bitmap |= CTLR_ENABLE_G1S_BIT; } /* Configure the G0 SPIs */ if (driver_data->g0_interrupt_array) { gicv3_secure_spis_configure(driver_data->gicd_base, driver_data->g0_interrupt_num, driver_data->g0_interrupt_array, INTR_GROUP0); bitmap |= CTLR_ENABLE_G0_BIT; } /* Enable the secure SPIs now that they have been configured */ gicd_set_ctlr(driver_data->gicd_base, bitmap, RWP_TRUE); } /******************************************************************************* * This function initialises the GIC Redistributor interface of the calling CPU * (identified by the 'proc_num' parameter) based upon the data provided by the * platform while initialising the driver. ******************************************************************************/ void gicv3_rdistif_init(unsigned int proc_num) { uintptr_t gicr_base; assert(driver_data); assert(proc_num < driver_data->rdistif_num); assert(driver_data->rdistif_base_addrs); assert(driver_data->gicd_base); assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT); assert(driver_data->g1s_interrupt_array || driver_data->g0_interrupt_array); assert(IS_IN_EL3()); /* Power on redistributor */ gicv3_rdistif_on(proc_num); gicr_base = driver_data->rdistif_base_addrs[proc_num]; /* Set the default attribute of all SGIs and PPIs */ gicv3_ppi_sgi_configure_defaults(gicr_base); /* Configure the G1S SGIs/PPIs */ if (driver_data->g1s_interrupt_array) { gicv3_secure_ppi_sgi_configure(gicr_base, driver_data->g1s_interrupt_num, driver_data->g1s_interrupt_array, INTR_GROUP1S); } /* Configure the G0 SGIs/PPIs */ if (driver_data->g0_interrupt_array) { gicv3_secure_ppi_sgi_configure(gicr_base, driver_data->g0_interrupt_num, driver_data->g0_interrupt_array, INTR_GROUP0); } } /******************************************************************************* * Functions to perform power operations on GIC Redistributor ******************************************************************************/ void gicv3_rdistif_off(unsigned int proc_num) { return; } void gicv3_rdistif_on(unsigned int proc_num) { return; } /******************************************************************************* * This function enables the GIC CPU interface of the calling CPU using only * system register accesses. ******************************************************************************/ void gicv3_cpuif_enable(unsigned int proc_num) { uintptr_t gicr_base; unsigned int scr_el3; unsigned int icc_sre_el3; assert(driver_data); assert(proc_num < driver_data->rdistif_num); assert(driver_data->rdistif_base_addrs); assert(IS_IN_EL3()); /* Mark the connected core as awake */ gicr_base = driver_data->rdistif_base_addrs[proc_num]; gicv3_rdistif_mark_core_awake(gicr_base); /* Disable the legacy interrupt bypass */ icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT; /* * Enable system register access for EL3 and allow lower exception * levels to configure the same for themselves. If the legacy mode is * not supported, the SRE bit is RAO/WI */ icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT); write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3); scr_el3 = read_scr_el3(); /* * Switch to NS state to write Non secure ICC_SRE_EL1 and * ICC_SRE_EL2 registers. */ write_scr_el3(scr_el3 | SCR_NS_BIT); isb(); write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3); write_icc_sre_el1(ICC_SRE_SRE_BIT); isb(); /* Switch to secure state. */ write_scr_el3(scr_el3 & (~SCR_NS_BIT)); isb(); /* Program the idle priority in the PMR */ write_icc_pmr_el1(GIC_PRI_MASK); /* Enable Group0 interrupts */ write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT); /* Enable Group1 Secure interrupts */ write_icc_igrpen1_el3(read_icc_igrpen1_el3() | IGRPEN1_EL3_ENABLE_G1S_BIT); /* Write the secure ICC_SRE_EL1 register */ write_icc_sre_el1(ICC_SRE_SRE_BIT); isb(); } /******************************************************************************* * This function disables the GIC CPU interface of the calling CPU using * only system register accesses. ******************************************************************************/ void gicv3_cpuif_disable(unsigned int proc_num) { uintptr_t gicr_base; assert(driver_data); assert(proc_num < driver_data->rdistif_num); assert(driver_data->rdistif_base_addrs); assert(IS_IN_EL3()); /* Disable legacy interrupt bypass */ write_icc_sre_el3(read_icc_sre_el3() | (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT)); /* Disable Group0 interrupts */ write_icc_igrpen0_el1(read_icc_igrpen0_el1() & ~IGRPEN1_EL1_ENABLE_G0_BIT); /* Disable Group1 Secure and Non-Secure interrupts */ write_icc_igrpen1_el3(read_icc_igrpen1_el3() & ~(IGRPEN1_EL3_ENABLE_G1NS_BIT | IGRPEN1_EL3_ENABLE_G1S_BIT)); /* Synchronise accesses to group enable registers */ isb(); /* Mark the connected core as asleep */ gicr_base = driver_data->rdistif_base_addrs[proc_num]; gicv3_rdistif_mark_core_asleep(gicr_base); } /******************************************************************************* * This function returns the id of the highest priority pending interrupt at * the GIC cpu interface. ******************************************************************************/ unsigned int gicv3_get_pending_interrupt_id(void) { unsigned int id; assert(IS_IN_EL3()); id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; /* * If the ID is special identifier corresponding to G1S or G1NS * interrupt, then read the highest pending group 1 interrupt. */ if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK; return id; } /******************************************************************************* * This function returns the type of the highest priority pending interrupt at * the GIC cpu interface. The return values can be one of the following : * PENDING_G1S_INTID : The interrupt type is secure Group 1. * PENDING_G1NS_INTID : The interrupt type is non secure Group 1. * 0 - 1019 : The interrupt type is secure Group 0. * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with * sufficient priority to be signaled ******************************************************************************/ unsigned int gicv3_get_pending_interrupt_type(void) { assert(IS_IN_EL3()); return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; } /******************************************************************************* * This function returns the type of the interrupt id depending upon the group * this interrupt has been configured under by the interrupt controller i.e. * group0 or group1 Secure / Non Secure. The return value can be one of the * following : * INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt * INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt * INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure * interrupt. ******************************************************************************/ unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num) { unsigned int igroup, grpmodr; uintptr_t gicr_base; assert(IS_IN_EL3()); assert(driver_data); /* Ensure the parameters are valid */ assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID); assert(proc_num < driver_data->rdistif_num); /* All LPI interrupts are Group 1 non secure */ if (id >= MIN_LPI_ID) return INTR_GROUP1NS; if (id < MIN_SPI_ID) { assert(driver_data->rdistif_base_addrs); gicr_base = driver_data->rdistif_base_addrs[proc_num]; igroup = gicr_get_igroupr0(gicr_base, id); grpmodr = gicr_get_igrpmodr0(gicr_base, id); } else { assert(driver_data->gicd_base); igroup = gicd_get_igroupr(driver_data->gicd_base, id); grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id); } /* * If the IGROUP bit is set, then it is a Group 1 Non secure * interrupt */ if (igroup) return INTR_GROUP1NS; /* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */ if (grpmodr) return INTR_GROUP1S; /* Else it is a Group 0 Secure interrupt */ return INTR_GROUP0; }