/* * Copyright (c) 2015-2018, Renesas Electronics Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include "cpg_registers.h" #include "avs_driver.h" #include "rcar_def.h" #include "rcar_private.h" #if (AVS_SETTING_ENABLE == 1) #if PMIC_ROHM_BD9571 /* Read PMIC register for debug. 1:enable / 0:disable */ #define AVS_READ_PMIC_REG_ENABLE 0 /* The re-try number of times of the AVS setting. */ #define AVS_RETRY_NUM (1U) #endif /* PMIC_ROHM_BD9571 */ /* Base address of Adaptive Voltage Scaling module registers*/ #define AVS_BASE (0xE60A0000U) /* Adaptive Dynamic Voltage ADJust Parameter2 registers */ #define ADVADJP2 (AVS_BASE + 0x013CU) /* Mask VOLCOND bit in ADVADJP2 registers */ #define ADVADJP2_VOLCOND_MASK (0x000001FFU) /* VOLCOND[8:0] */ #if PMIC_ROHM_BD9571 /* I2C for DVFS bit in CPG registers for module standby and software reset*/ #define CPG_SYS_DVFS_BIT (0x04000000U) #endif /* PMIC_ROHM_BD9571 */ /* ADVFS Module bit in CPG registers for module standby and software reset*/ #define CPG_SYS_ADVFS_BIT (0x02000000U) #if PMIC_ROHM_BD9571 /* Base address of IICDVFS registers*/ #define IIC_DVFS_BASE (0xE60B0000U) /* IIC bus data register */ #define IIC_ICDR (IIC_DVFS_BASE + 0x0000U) /* IIC bus control register */ #define IIC_ICCR (IIC_DVFS_BASE + 0x0004U) /* IIC bus status register */ #define IIC_ICSR (IIC_DVFS_BASE + 0x0008U) /* IIC interrupt control register */ #define IIC_ICIC (IIC_DVFS_BASE + 0x000CU) /* IIC clock control register low */ #define IIC_ICCL (IIC_DVFS_BASE + 0x0010U) /* IIC clock control register high */ #define IIC_ICCH (IIC_DVFS_BASE + 0x0014U) /* Bit in ICSR register */ #define ICSR_BUSY (0x10U) #define ICSR_AL (0x08U) #define ICSR_TACK (0x04U) #define ICSR_WAIT (0x02U) #define ICSR_DTE (0x01U) /* Bit in ICIC register */ #define ICIC_TACKE (0x04U) #define ICIC_WAITE (0x02U) #define ICIC_DTEE (0x01U) /* I2C bus interface enable */ #define ICCR_ENABLE (0x80U) /* Start condition */ #define ICCR_START (0x94U) /* Stop condition */ #define ICCR_STOP (0x90U) /* Restart condition with change to receive mode change */ #define ICCR_START_RECV (0x81U) /* Stop condition for receive mode */ #define ICCR_STOP_RECV (0xC0U) /* Low-level period of SCL */ #define ICCL_FREQ_8p33M (0x07U) /* for CP Phy 8.3333MHz */ #define ICCL_FREQ_10M (0x09U) /* for CP Phy 10MHz */ #define ICCL_FREQ_12p5M (0x0BU) /* for CP Phy 12.5MHz */ #define ICCL_FREQ_16p66M (0x0EU) /* for CP Phy 16.6666MHz */ /* High-level period of SCL */ #define ICCH_FREQ_8p33M (0x01U) /* for CP Phy 8.3333MHz */ #define ICCH_FREQ_10M (0x02U) /* for CP Phy 10MHz */ #define ICCH_FREQ_12p5M (0x03U) /* for CP Phy 12.5MHz */ #define ICCH_FREQ_16p66M (0x05U) /* for CP Phy 16.6666MHz */ /* PMIC */ #define PMIC_W_SLAVE_ADDRESS (0x60U) /* ROHM BD9571 slave address + (W) */ #define PMIC_R_SLAVE_ADDRESS (0x61U) /* ROHM BD9571 slave address + (R) */ #define PMIC_DVFS_SETVID (0x54U) /* ROHM BD9571 DVFS SetVID register */ #endif /* PMIC_ROHM_BD9571 */ /* Individual information */ #define EFUSE_AVS0 (0U) #define EFUSE_AVS_NUM ARRAY_SIZE(init_vol_tbl) typedef struct { uint32_t avs; /* AVS code */ uint8_t vol; /* Voltage */ } initial_voltage_t; static const initial_voltage_t init_vol_tbl[] = { /* AVS code, RHOM BD9571 DVFS SetVID register */ {0x00U, 0x53U}, /* AVS0, 0.83V */ {0x01U, 0x52U}, /* AVS1, 0.82V */ {0x02U, 0x51U}, /* AVS2, 0.81V */ {0x04U, 0x50U}, /* AVS3, 0.80V */ {0x08U, 0x4FU}, /* AVS4, 0.79V */ {0x10U, 0x4EU}, /* AVS5, 0.78V */ {0x20U, 0x4DU}, /* AVS6, 0.77V */ {0x40U, 0x4CU} /* AVS7, 0.76V */ }; #if PMIC_ROHM_BD9571 /* Kind of AVS settings status */ typedef enum { avs_status_none = 0, avs_status_init, avs_status_start_condition, avs_status_set_slave_addr, avs_status_write_reg_addr, avs_status_write_reg_data, avs_status_stop_condition, avs_status_end, avs_status_complete, avs_status_al_start, avs_status_al_transfer, avs_status_nack, avs_status_error_stop, ave_status_error_end } avs_status_t; /* Kind of AVS error */ typedef enum { avs_error_none = 0, avs_error_al, avs_error_nack } avs_error_t; static avs_status_t avs_status; static uint32_t avs_retry; #endif /* PMIC_ROHM_BD9571 */ static uint32_t efuse_avs = EFUSE_AVS0; #if PMIC_ROHM_BD9571 /* prototype */ static avs_error_t avs_check_error(void); static void avs_set_iic_clock(void); #if AVS_READ_PMIC_REG_ENABLE == 1 static uint8_t avs_read_pmic_reg(uint8_t addr); static void avs_poll(uint8_t bit_pos, uint8_t val); #endif #endif /* PMIC_ROHM_BD9571 */ #endif /* (AVS_SETTING_ENABLE==1) */ /* * Initialize to enable the AVS setting. */ void rcar_avs_init(void) { #if (AVS_SETTING_ENABLE == 1) uint32_t val; #if PMIC_ROHM_BD9571 /* Initialize AVS status */ avs_status = avs_status_init; #endif /* PMIC_ROHM_BD9571 */ /* Enable clock supply to ADVFS. */ mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_ADVFS_BIT); /* Read AVS code (Initial values are derived from eFuse) */ val = mmio_read_32(ADVADJP2) & ADVADJP2_VOLCOND_MASK; for (efuse_avs = 0U; efuse_avs < EFUSE_AVS_NUM; efuse_avs++) { if (val == init_vol_tbl[efuse_avs].avs) break; } if (efuse_avs >= EFUSE_AVS_NUM) efuse_avs = EFUSE_AVS0; /* Not applicable */ #if PMIC_ROHM_BD9571 /* Enable clock supply to DVFS. */ mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_DVFS_BIT); /* Disable I2C module and All internal registers initialized. */ mmio_write_8(IIC_ICCR, 0x00U); while ((mmio_read_8(IIC_ICCR) & ICCR_ENABLE) != 0U) { /* Disable I2C module and All internal registers initialized. */ mmio_write_8(IIC_ICCR, 0x00U); } /* Set next status */ avs_status = avs_status_start_condition; #endif /* PMIC_ROHM_BD9571 */ #endif /* (AVS_SETTING_ENABLE==1) */ } /* * Set the value of register corresponding to the voltage * by transfer of I2C to PIMC. */ void rcar_avs_setting(void) { #if (AVS_SETTING_ENABLE == 1) #if PMIC_ROHM_BD9571 avs_error_t err; switch (avs_status) { case avs_status_start_condition: /* Set ICCR.ICE=1 to activate the I2C module. */ mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE); /* Set frequency of 400kHz */ avs_set_iic_clock(); /* Set ICIC.TACKE=1, ICIC.WAITE=1, ICIC.DTEE=1 to */ /* enable interrupt control. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_TACKE | ICIC_WAITE | ICIC_DTEE); /* Write H'94 in ICCR to issue start condition */ mmio_write_8(IIC_ICCR, ICCR_START); /* Set next status */ avs_status = avs_status_set_slave_addr; break; case avs_status_set_slave_addr: /* Check error. */ err = avs_check_error(); if (err == avs_error_al) { /* Recovery sequence of just after start. */ avs_status = avs_status_al_start; } else if (err == avs_error_nack) { /* Recovery sequence of detected NACK */ avs_status = avs_status_nack; } else { /* Was data transmission enabled ? */ if ((mmio_read_8(IIC_ICSR) & ICSR_DTE) == ICSR_DTE) { /* Clear ICIC.DTEE to disable a DTE interrupt */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); /* Send PMIC slave address + (W) */ mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS); /* Set next status */ avs_status = avs_status_write_reg_addr; } } break; case avs_status_write_reg_addr: /* Check error. */ err = avs_check_error(); if (err == avs_error_al) { /* Recovery sequence of during data transfer. */ avs_status = avs_status_al_transfer; } else if (err == avs_error_nack) { /* Recovery sequence of detected NACK */ avs_status = avs_status_nack; } else { /* If wait state after data transmission. */ if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { /* Write PMIC DVFS_SetVID address */ mmio_write_8(IIC_ICDR, PMIC_DVFS_SETVID); /* Clear ICSR.WAIT to exit from wait state. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Set next status */ avs_status = avs_status_write_reg_data; } } break; case avs_status_write_reg_data: /* Check error. */ err = avs_check_error(); if (err == avs_error_al) { /* Recovery sequence of during data transfer. */ avs_status = avs_status_al_transfer; } else if (err == avs_error_nack) { /* Recovery sequence of detected NACK */ avs_status = avs_status_nack; } else { /* If wait state after data transmission. */ if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { /* Dose efuse_avs exceed the number of */ /* the tables? */ if (efuse_avs >= EFUSE_AVS_NUM) { ERROR("AVS number of eFuse is out " "of a range. number=%u\n", efuse_avs); /* Infinite loop */ panic(); } /* Write PMIC DVFS_SetVID value */ mmio_write_8(IIC_ICDR, init_vol_tbl[efuse_avs].vol); /* Clear ICSR.WAIT to exit from wait state. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Set next status */ avs_status = avs_status_stop_condition; } } break; case avs_status_stop_condition: err = avs_check_error(); if (err == avs_error_al) { /* Recovery sequence of during data transfer. */ avs_status = avs_status_al_transfer; } else if (err == avs_error_nack) { /* Recovery sequence of detected NACK */ avs_status = avs_status_nack; } else { /* If wait state after data transmission. */ if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { /* Write H'90 in ICCR to issue stop condition */ mmio_write_8(IIC_ICCR, ICCR_STOP); /* Clear ICSR.WAIT to exit from wait state. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Set next status */ avs_status = avs_status_end; } } break; case avs_status_end: /* Is this module not busy?. */ if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) { /* Set ICCR=H'00 to disable the I2C module. */ mmio_write_8(IIC_ICCR, 0x00U); /* Set next status */ avs_status = avs_status_complete; } break; case avs_status_al_start: /* Clear ICSR.AL bit */ mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_AL))); /* Transmit a clock pulse */ mmio_write_8(IIC_ICDR, init_vol_tbl[EFUSE_AVS0].vol); /* Set next status */ avs_status = avs_status_error_stop; break; case avs_status_al_transfer: /* Clear ICSR.AL bit */ mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_AL))); /* Set next status */ avs_status = avs_status_error_stop; break; case avs_status_nack: /* Write H'90 in ICCR to issue stop condition */ mmio_write_8(IIC_ICCR, ICCR_STOP); /* Disable a WAIT and DTEE interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~(ICIC_WAITE | ICIC_DTEE))); /* Clear ICSR.TACK bit */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_TACK)); /* Set next status */ avs_status = ave_status_error_end; break; case avs_status_error_stop: /* If wait state after data transmission. */ if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { /* Write H'90 in ICCR to issue stop condition */ mmio_write_8(IIC_ICCR, ICCR_STOP); /* Clear ICSR.WAIT to exit from wait state. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Set next status */ avs_status = ave_status_error_end; } break; case ave_status_error_end: /* Is this module not busy?. */ if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) { /* Set ICCR=H'00 to disable the I2C module. */ mmio_write_8(IIC_ICCR, 0x00U); /* Increment the re-try number of times. */ avs_retry++; /* Set start a re-try to status. */ avs_status = avs_status_start_condition; } break; case avs_status_complete: /* After "avs_status" became the "avs_status_complete", */ /* "avs_setting()" function may be called. */ break; default: /* This case is not possible. */ ERROR("AVS setting is in invalid status. status=%u\n", avs_status); /* Infinite loop */ panic(); break; } #endif /* PMIC_ROHM_BD9571 */ #endif /* (AVS_SETTING_ENABLE==1) */ } /* * Finish the AVS setting. */ void rcar_avs_end(void) { #if (AVS_SETTING_ENABLE == 1) uint32_t mstp; #if PMIC_ROHM_BD9571 /* While status is not completion, be repeated. */ while (avs_status != avs_status_complete) rcar_avs_setting(); NOTICE("AVS setting succeeded. DVFS_SetVID=0x%x\n", init_vol_tbl[efuse_avs].vol); #if AVS_READ_PMIC_REG_ENABLE == 1 { uint8_t addr = PMIC_DVFS_SETVID; uint8_t value = avs_read_pmic_reg(addr); NOTICE("Read PMIC register. address=0x%x value=0x%x \n", addr, value); } #endif /* Bit of the module which wants to disable clock supply. */ mstp = CPG_SYS_DVFS_BIT; /* Disables the supply of clock signal to a module. */ cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp); #endif /* PMIC_ROHM_BD9571 */ /* Bit of the module which wants to disable clock supply. */ mstp = CPG_SYS_ADVFS_BIT; /* Disables the supply of clock signal to a module. */ cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp); #endif /* (AVS_SETTING_ENABLE==1) */ } #if (AVS_SETTING_ENABLE == 1) #if PMIC_ROHM_BD9571 /* * Check error and judge re-try. */ static avs_error_t avs_check_error(void) { avs_error_t ret; if ((mmio_read_8(IIC_ICSR) & ICSR_AL) == ICSR_AL) { NOTICE("Loss of arbitration is detected. " "AVS status=%d Retry=%u\n", avs_status, avs_retry); /* Check of retry number of times */ if (avs_retry >= AVS_RETRY_NUM) { ERROR("AVS setting failed in retry. max=%u\n", AVS_RETRY_NUM); /* Infinite loop */ panic(); } /* Set the error detected to error status. */ ret = avs_error_al; } else if ((mmio_read_8(IIC_ICSR) & ICSR_TACK) == ICSR_TACK) { NOTICE("Non-acknowledge is detected. " "AVS status=%d Retry=%u\n", avs_status, avs_retry); /* Check of retry number of times */ if (avs_retry >= AVS_RETRY_NUM) { ERROR("AVS setting failed in retry. max=%u\n", AVS_RETRY_NUM); /* Infinite loop */ panic(); } /* Set the error detected to error status. */ ret = avs_error_nack; } else { /* Not error. */ ret = avs_error_none; } return ret; } /* * Set I2C for DVFS clock. */ static void avs_set_iic_clock(void) { uint32_t md_pin; /* Read Mode pin register. */ md_pin = mmio_read_32(RCAR_MODEMR) & CHECK_MD13_MD14; /* Set the module clock (CP phy) for the IIC-DVFS. */ /* CP phy is EXTAL / 2. */ switch (md_pin) { case MD14_MD13_TYPE_0: /* EXTAL = 16.6666MHz */ mmio_write_8(IIC_ICCL, ICCL_FREQ_8p33M); mmio_write_8(IIC_ICCH, ICCH_FREQ_8p33M); break; case MD14_MD13_TYPE_1: /* EXTAL = 20MHz */ mmio_write_8(IIC_ICCL, ICCL_FREQ_10M); mmio_write_8(IIC_ICCH, ICCH_FREQ_10M); break; case MD14_MD13_TYPE_2: /* EXTAL = 25MHz (H3/M3) */ mmio_write_8(IIC_ICCL, ICCL_FREQ_12p5M); mmio_write_8(IIC_ICCH, ICCH_FREQ_12p5M); break; case MD14_MD13_TYPE_3: /* EXTAL = 33.3333MHz */ mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M); mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M); break; default: /* This case is not possible. */ /* CP Phy frequency is to be set for the 16.66MHz */ mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M); mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M); break; } } #if AVS_READ_PMIC_REG_ENABLE == 1 /* * Read the value of the register of PMIC. */ static uint8_t avs_read_pmic_reg(uint8_t addr) { uint8_t reg; /* Set ICCR.ICE=1 to activate the I2C module. */ mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE); /* Set frequency of 400kHz */ avs_set_iic_clock(); /* Set ICIC.WAITE=1, ICIC.DTEE=1 to enable data transmission */ /* interrupt and wait interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_WAITE | ICIC_DTEE); /* Write H'94 in ICCR to issue start condition */ mmio_write_8(IIC_ICCR, ICCR_START); /* Wait for a until ICSR.DTE becomes 1. */ avs_poll(ICSR_DTE, 1U); /* Clear ICIC.DTEE to disable a DTE interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); /* Send slave address of PMIC */ mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS); /* Wait for a until ICSR.WAIT becomes 1. */ avs_poll(ICSR_WAIT, 1U); /* write PMIC address */ mmio_write_8(IIC_ICDR, addr); /* Clear ICSR.WAIT to exit from WAIT status. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Wait for a until ICSR.WAIT becomes 1. */ avs_poll(ICSR_WAIT, 1U); /* Write H'94 in ICCR to issue restart condition */ mmio_write_8(IIC_ICCR, ICCR_START); /* Clear ICSR.WAIT to exit from WAIT status. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Set ICIC.DTEE=1 to enable data transmission interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE); /* Wait for a until ICSR.DTE becomes 1. */ avs_poll(ICSR_DTE, 1U); /* Clear ICIC.DTEE to disable a DTE interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); /* Send slave address of PMIC */ mmio_write_8(IIC_ICDR, PMIC_R_SLAVE_ADDRESS); /* Wait for a until ICSR.WAIT becomes 1. */ avs_poll(ICSR_WAIT, 1U); /* Write H'81 to ICCR to issue the repeated START condition */ /* for changing the transmission mode to the receive mode. */ mmio_write_8(IIC_ICCR, ICCR_START_RECV); /* Clear ICSR.WAIT to exit from WAIT status. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Wait for a until ICSR.WAIT becomes 1. */ avs_poll(ICSR_WAIT, 1U); /* Set ICCR to H'C0 for the STOP condition */ mmio_write_8(IIC_ICCR, ICCR_STOP_RECV); /* Clear ICSR.WAIT to exit from WAIT status. */ mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); /* Set ICIC.DTEE=1 to enable data transmission interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE); /* Wait for a until ICSR.DTE becomes 1. */ avs_poll(ICSR_DTE, 1U); /* Receive DVFS SetVID register */ /* Clear ICIC.DTEE to disable a DTE interrupt. */ mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); /* Receive DVFS SetVID register */ reg = mmio_read_8(IIC_ICDR); /* Wait until ICSR.BUSY is cleared. */ avs_poll(ICSR_BUSY, 0U); /* Set ICCR=H'00 to disable the I2C module. */ mmio_write_8(IIC_ICCR, 0x00U); return reg; } /* * Wait processing by the polling. */ static void avs_poll(uint8_t bit_pos, uint8_t val) { uint8_t bit_val = 0U; if (val != 0U) bit_val = bit_pos; while (1) { if ((mmio_read_8(IIC_ICSR) & bit_pos) == bit_val) break; } } #endif /* AVS_READ_PMIC_REG_ENABLE */ #endif /* PMIC_ROHM_BD9571 */ #endif /* (AVS_SETTING_ENABLE==1) */