/* * Copyright (c) 2019-2020, Xilinx, Inc. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * Top-level SMC handler for Versal power management calls and * IPI setup functions for communication with PMC. */ #include #include #include #include #include #include "pm_api_sys.h" #include "pm_client.h" #include "pm_ipi.h" /* pm_up = true - UP, pm_up = false - DOWN */ static bool pm_up; static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { (void)plat_ic_acknowledge_interrupt(); /* Clear FIQ */ plat_ic_end_of_interrupt(id); return 0; } /** * pm_setup() - PM service setup * * @return On success, the initialization function must return 0. * Any other return value will cause the framework to ignore * the service * * Initialization functions for Versal power management for * communicaton with PMC. * * Called from sip_svc_setup initialization function with the * rt_svc_init signature. */ int pm_setup(void) { int status, ret = 0; status = pm_ipi_init(primary_proc); if (status < 0) { INFO("BL31: PM Service Init Failed, Error Code %d!\n", status); ret = status; } else { pm_up = true; } /* * Enable IPI IRQ * assume the rich OS is OK to handle callback IRQs now. * Even if we were wrong, it would not enable the IRQ in * the GIC. */ pm_ipi_irq_enable(primary_proc); ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler); if (ret) { WARN("BL31: registering IPI interrupt failed\n"); } return ret; } /** * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. * @smc_fid - Function Identifier * @x1 - x4 - Arguments * @cookie - Unused * @handler - Pointer to caller's context structure * * @return - Unused * * Determines that smc_fid is valid and supported PM SMC Function ID from the * list of pm_api_ids, otherwise completes the request with * the unknown SMC Function ID * * The SMC calls for PM service are forwarded from SIP Service SMC handler * function with rt_svc_handle signature */ uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { enum pm_ret_status ret; uint32_t pm_arg[4]; uint32_t security_flag = SECURE_FLAG; /* Handle case where PM wasn't initialized properly */ if (!pm_up) SMC_RET1(handle, SMC_UNK); pm_arg[0] = (uint32_t)x1; pm_arg[1] = (uint32_t)(x1 >> 32); pm_arg[2] = (uint32_t)x2; pm_arg[3] = (uint32_t)(x2 >> 32); /* * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as non-secure (1) * if smc called is non secure */ if (is_caller_non_secure(flags)) { security_flag = NON_SECURE_FLAG; } switch (smc_fid & FUNCID_NUM_MASK) { /* PM API Functions */ case PM_SELF_SUSPEND: ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_FORCE_POWERDOWN: ret = pm_force_powerdown(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_SUSPEND: ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_ABORT_SUSPEND: ret = pm_abort_suspend(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_SYSTEM_SHUTDOWN: ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_WAKEUP: ret = pm_req_wakeup(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_SET_WAKEUP_SOURCE: ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_REQUEST_DEVICE: ret = pm_request_device(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_RELEASE_DEVICE: ret = pm_release_device(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_SET_REQUIREMENT: ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_GET_API_VERSION: { uint32_t api_version; ret = pm_get_api_version(&api_version, security_flag); SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | ((uint64_t)api_version << 32)); } case PM_GET_DEVICE_STATUS: { uint32_t buff[3]; ret = pm_get_device_status(pm_arg[0], buff, security_flag); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buff[0] << 32), (uint64_t)buff[1] | ((uint64_t)buff[2] << 32)); } case PM_RESET_ASSERT: ret = pm_reset_assert(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_RESET_GET_STATUS: { uint32_t reset_status; ret = pm_reset_get_status(pm_arg[0], &reset_status, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)reset_status << 32)); } case PM_INIT_FINALIZE: ret = pm_init_finalize(security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_GET_CALLBACK_DATA: { uint32_t result[4] = {0}; pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag); SMC_RET2(handle, (uint64_t)result[0] | ((uint64_t)result[1] << 32), (uint64_t)result[2] | ((uint64_t)result[3] << 32)); } case PM_PINCTRL_REQUEST: ret = pm_pinctrl_request(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_RELEASE: ret = pm_pinctrl_release(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_GET_FUNCTION: { uint32_t value = 0; ret = pm_pinctrl_get_function(pm_arg[0], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_PINCTRL_SET_FUNCTION: ret = pm_pinctrl_set_function(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_CONFIG_PARAM_GET: { uint32_t value; ret = pm_pinctrl_get_pin_param(pm_arg[0], pm_arg[1], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_PINCTRL_CONFIG_PARAM_SET: ret = pm_pinctrl_set_pin_param(pm_arg[0], pm_arg[1], pm_arg[2], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_IOCTL: { uint32_t value; ret = pm_api_ioctl(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_QUERY_DATA: { uint32_t data[8] = { 0 }; ret = pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], data, security_flag); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)data[0] << 32), (uint64_t)data[1] | ((uint64_t)data[2] << 32)); } case PM_CLOCK_ENABLE: ret = pm_clock_enable(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_DISABLE: ret = pm_clock_disable(pm_arg[0], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETSTATE: { uint32_t value; ret = pm_clock_get_state(pm_arg[0], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_CLOCK_SETDIVIDER: ret = pm_clock_set_divider(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETDIVIDER: { uint32_t value; ret = pm_clock_get_divider(pm_arg[0], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_CLOCK_SETPARENT: ret = pm_clock_set_parent(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETPARENT: { uint32_t value; ret = pm_clock_get_parent(pm_arg[0], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_CLOCK_GETRATE: { uint32_t rate[2] = { 0 }; ret = pm_clock_get_rate(pm_arg[0], rate, security_flag); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)rate[0] << 32), rate[1]); } case PM_PLL_SET_PARAMETER: ret = pm_pll_set_param(pm_arg[0], pm_arg[1], pm_arg[2], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_PLL_GET_PARAMETER: { uint32_t value; ret = pm_pll_get_param(pm_arg[0], pm_arg[1], &value, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32)); } case PM_PLL_SET_MODE: ret = pm_pll_set_mode(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); case PM_PLL_GET_MODE: { uint32_t mode; ret = pm_pll_get_mode(pm_arg[0], &mode, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32)); } case PM_GET_TRUSTZONE_VERSION: SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | ((uint64_t)VERSAL_TZ_VERSION << 32)); case PM_GET_CHIPID: { uint32_t result[2]; ret = pm_get_chipid(result, security_flag); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32), result[1]); } case PM_FEATURE_CHECK: { uint32_t version; ret = pm_feature_check(pm_arg[0], &version, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)version << 32)); } case PM_LOAD_PDI: { ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2], security_flag); SMC_RET1(handle, (uint64_t)ret); } case PM_GET_OP_CHARACTERISTIC: { uint32_t result; ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result, security_flag); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32)); } case PM_SET_MAX_LATENCY: { ret = pm_set_max_latency(pm_arg[0], pm_arg[1], security_flag); SMC_RET1(handle, (uint64_t)ret); } case PM_REGISTER_NOTIFIER: { ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag); SMC_RET1(handle, (uint64_t)ret); } default: WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid); SMC_RET1(handle, SMC_UNK); } }