/* * Copyright (c) 2013, ARM Limited. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include /******************************************************************************* * Arrays that contains information needs to resume a cpu's execution when woken * out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next * free index in the 'psci_ns_entry_info' & 'psci_secure_context' arrays. Each * cpu is allocated a single entry in each array during startup. ******************************************************************************/ secure_context psci_secure_context[PSCI_NUM_AFFS]; ns_entry_info psci_ns_entry_info[PSCI_NUM_AFFS]; unsigned int psci_ns_einfo_idx; /******************************************************************************* * Grand array that holds the platform's topology information for state * management of affinity instances. Each node (aff_map_node) in the array * corresponds to an affinity instance e.g. cluster, cpu within an mpidr ******************************************************************************/ aff_map_node psci_aff_map[PSCI_NUM_AFFS] __attribute__ ((section("tzfw_coherent_mem"))); /******************************************************************************* * In a system, a certain number of affinity instances are present at an * affinity level. The cumulative number of instances across all levels are * stored in 'psci_aff_map'. The topology tree has been flattenned into this * array. To retrieve nodes, information about the extents of each affinity * level i.e. start index and end index needs to be present. 'psci_aff_limits' * stores this information. ******************************************************************************/ aff_limits_node psci_aff_limits[MPIDR_MAX_AFFLVL + 1]; /******************************************************************************* * Pointer to functions exported by the platform to complete power mgmt. ops ******************************************************************************/ plat_pm_ops *psci_plat_pm_ops; /******************************************************************************* * Simple routine to retrieve the maximum affinity level supported by the * platform and check that it makes sense. ******************************************************************************/ int get_max_afflvl() { int aff_lvl; aff_lvl = plat_get_max_afflvl(); assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0); return aff_lvl; } /******************************************************************************* * Simple routine to set the id of an affinity instance at a given level in the * mpidr. ******************************************************************************/ unsigned long mpidr_set_aff_inst(unsigned long mpidr, unsigned char aff_inst, int aff_lvl) { unsigned long aff_shift; assert(aff_lvl <= MPIDR_AFFLVL3); /* * Decide the number of bits to shift by depending upon * the affinity level */ aff_shift = get_afflvl_shift(aff_lvl); /* Clear the existing affinity instance & set the new one*/ mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift); mpidr |= aff_inst << aff_shift; return mpidr; } /******************************************************************************* * Simple routine to determine whether an affinity instance at a given level * in an mpidr exists or not. ******************************************************************************/ int psci_validate_mpidr(unsigned long mpidr, int level) { aff_map_node *node; node = psci_get_aff_map_node(mpidr, level); if (node && (node->state & PSCI_AFF_PRESENT)) return PSCI_E_SUCCESS; else return PSCI_E_INVALID_PARAMS; } /******************************************************************************* * Simple routine to determine the first affinity level instance that is present * between the start and end affinity levels. This helps to skip handling of * absent affinity levels while performing psci operations. * The start level can be > or <= to the end level depending upon whether this * routine is expected to search top down or bottom up. ******************************************************************************/ int psci_get_first_present_afflvl(unsigned long mpidr, int start_afflvl, int end_afflvl, aff_map_node **node) { int level; /* Check whether we have to search up or down */ if (start_afflvl <= end_afflvl) { for (level = start_afflvl; level <= end_afflvl; level++) { *node = psci_get_aff_map_node(mpidr, level); if (*node && ((*node)->state & PSCI_AFF_PRESENT)) break; } } else { for (level = start_afflvl; level >= end_afflvl; level--) { *node = psci_get_aff_map_node(mpidr, level); if (*node && ((*node)->state & PSCI_AFF_PRESENT)) break; } } return level; } /******************************************************************************* * Recursively change the affinity state between the current and target affinity * levels. The target state matters only if we are starting from affinity level * 0 i.e. a cpu otherwise the state depends upon the state of the lower affinity * levels. ******************************************************************************/ int psci_change_state(unsigned long mpidr, int cur_afflvl, int tgt_afflvl, unsigned int tgt_state) { int rc = PSCI_E_SUCCESS; unsigned int state; aff_map_node *aff_node; /* Sanity check the affinity levels */ assert(tgt_afflvl >= cur_afflvl); aff_node = psci_get_aff_map_node(mpidr, cur_afflvl); assert(aff_node); /* TODO: Check whether the affinity level is present or absent*/ if (cur_afflvl == MPIDR_AFFLVL0) { psci_set_state(aff_node->state, tgt_state); } else { state = psci_calculate_affinity_state(aff_node); psci_set_state(aff_node->state, state); } if (cur_afflvl != tgt_afflvl) psci_change_state(mpidr, cur_afflvl + 1, tgt_afflvl, tgt_state); return rc; } /******************************************************************************* * This routine does the heavy lifting for psci_change_state(). It examines the * state of each affinity instance at the next lower affinity level and decides * it's final state accordingly. If a lower affinity instance is ON then the * higher affinity instance is ON. If all the lower affinity instances are OFF * then the higher affinity instance is OFF. If atleast one lower affinity * instance is SUSPENDED then the higher affinity instance is SUSPENDED. If only * a single lower affinity instance is ON_PENDING then the higher affinity * instance in ON_PENDING as well. ******************************************************************************/ unsigned int psci_calculate_affinity_state(aff_map_node *aff_node) { int ctr; unsigned int aff_count, hi_aff_state; unsigned long tempidr; aff_map_node *lo_aff_node; /* Cannot calculate lowest affinity state. It's simply assigned */ assert(aff_node->level > MPIDR_AFFLVL0); /* * Find the number of affinity instances at level X-1 e.g. number of * cpus in a cluster. The level X state depends upon the state of each * instance at level X-1 */ hi_aff_state = PSCI_STATE_OFF; aff_count = plat_get_aff_count(aff_node->level - 1, aff_node->mpidr); for (ctr = 0; ctr < aff_count; ctr++) { /* * Create a mpidr for each lower affinity level (X-1). Use their * states to influence the higher affinity state (X). */ tempidr = mpidr_set_aff_inst(aff_node->mpidr, ctr, aff_node->level - 1); lo_aff_node = psci_get_aff_map_node(tempidr, aff_node->level - 1); assert(lo_aff_node); /* Continue only if the cpu exists within the cluster */ if (!(lo_aff_node->state & PSCI_AFF_PRESENT)) continue; switch (psci_get_state(lo_aff_node->state)) { /* * If any lower affinity is on within the cluster, then * the higher affinity is on. */ case PSCI_STATE_ON: return PSCI_STATE_ON; /* * At least one X-1 needs to be suspended for X to be suspended * but it's effectively on for the affinity_info call. * SUSPEND > ON_PENDING > OFF. */ case PSCI_STATE_SUSPEND: hi_aff_state = PSCI_STATE_SUSPEND; continue; /* * Atleast one X-1 needs to be on_pending & the rest off for X * to be on_pending. ON_PENDING > OFF. */ case PSCI_STATE_ON_PENDING: if (hi_aff_state != PSCI_STATE_SUSPEND) hi_aff_state = PSCI_STATE_ON_PENDING; continue; /* Higher affinity is off if all lower affinities are off. */ case PSCI_STATE_OFF: continue; default: assert(0); } } return hi_aff_state; } /******************************************************************************* * This function retrieves all the stashed information needed to correctly * resume a cpu's execution in the non-secure state after it has been physically * powered on i.e. turned ON or resumed from SUSPEND ******************************************************************************/ unsigned int psci_get_ns_entry_info(unsigned int index) { unsigned long sctlr = 0, scr, el_status, id_aa64pfr0; scr = read_scr(); /* Switch to the non-secure view of the registers */ write_scr(scr | SCR_NS_BIT); /* Find out which EL we are going to */ id_aa64pfr0 = read_id_aa64pfr0_el1(); el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) & ID_AA64PFR0_ELX_MASK; /* Restore endianess */ if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT) sctlr |= SCTLR_EE_BIT; else sctlr &= ~SCTLR_EE_BIT; /* Turn off MMU and Caching */ sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT); /* Set the register width */ if (psci_ns_entry_info[index].scr & SCR_RW_BIT) scr |= SCR_RW_BIT; else scr &= ~SCR_RW_BIT; scr |= SCR_NS_BIT; if (el_status) write_sctlr_el2(sctlr); else write_sctlr_el1(sctlr); /* Fulfill the cpu_on entry reqs. as per the psci spec */ write_scr(scr); write_spsr(psci_ns_entry_info[index].eret_info.spsr); write_elr(psci_ns_entry_info[index].eret_info.entrypoint); return psci_ns_entry_info[index].context_id; } /******************************************************************************* * This function retrieves and stashes all the information needed to correctly * resume a cpu's execution in the non-secure state after it has been physically * powered on i.e. turned ON or resumed from SUSPEND. This is done prior to * turning it on or before suspending it. ******************************************************************************/ int psci_set_ns_entry_info(unsigned int index, unsigned long entrypoint, unsigned long context_id) { int rc = PSCI_E_SUCCESS; unsigned int rw, mode, ee, spsr = 0; unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr(); unsigned long el_status; /* Figure out what mode do we enter the non-secure world in */ el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) & ID_AA64PFR0_ELX_MASK; /* * Figure out whether the cpu enters the non-secure address space * in aarch32 or aarch64 */ rw = scr & SCR_RW_BIT; if (rw) { /* * Check whether a Thumb entry point has been provided for an * aarch64 EL */ if (entrypoint & 0x1) return PSCI_E_INVALID_PARAMS; if (el_status && (scr & SCR_HCE_BIT)) { mode = MODE_EL2; ee = read_sctlr_el2() & SCTLR_EE_BIT; } else { mode = MODE_EL1; ee = read_sctlr_el1() & SCTLR_EE_BIT; } spsr = DAIF_DBG_BIT | DAIF_ABT_BIT; spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT; spsr <<= PSR_DAIF_SHIFT; spsr |= make_spsr(mode, MODE_SP_ELX, !rw); psci_ns_entry_info[index].sctlr |= ee; psci_ns_entry_info[index].scr |= SCR_RW_BIT; } else { /* Check whether aarch32 has to be entered in Thumb mode */ if (entrypoint & 0x1) spsr = SPSR32_T_BIT; if (el_status && (scr & SCR_HCE_BIT)) { mode = AARCH32_MODE_HYP; ee = read_sctlr_el2() & SCTLR_EE_BIT; } else { mode = AARCH32_MODE_SVC; ee = read_sctlr_el1() & SCTLR_EE_BIT; } /* * TODO: Choose async. exception bits if HYP mode is not * implemented according to the values of SCR.{AW, FW} bits */ spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; spsr <<= PSR_DAIF_SHIFT; if(ee) spsr |= SPSR32_EE_BIT; spsr |= mode; /* Ensure that the CSPR.E and SCTLR.EE bits match */ psci_ns_entry_info[index].sctlr |= ee; psci_ns_entry_info[index].scr &= ~SCR_RW_BIT; } psci_ns_entry_info[index].eret_info.entrypoint = entrypoint; psci_ns_entry_info[index].eret_info.spsr = spsr; psci_ns_entry_info[index].context_id = context_id; return rc; } /******************************************************************************* * An affinity level could be on, on_pending, suspended or off. These are the * logical states it can be in. Physically either it's off or on. When it's in * the state on_pending then it's about to be turned on. It's not possible to * tell whether that's actually happenned or not. So we err on the side of * caution & treat the affinity level as being turned off. ******************************************************************************/ inline unsigned int psci_get_phys_state(unsigned int aff_state) { return (aff_state != PSCI_STATE_ON ? PSCI_STATE_OFF : PSCI_STATE_ON); } unsigned int psci_get_aff_phys_state(aff_map_node *aff_node) { unsigned int aff_state; aff_state = psci_get_state(aff_node->state); return psci_get_phys_state(aff_state); } /******************************************************************************* * Generic handler which is called when a cpu is physically powered on. It * recurses through all the affinity levels performing generic, architectural, * platform setup and state management e.g. for a cluster that's been powered * on, it will call the platform specific code which will enable coherency at * the interconnect level. For a cpu it could mean turning on the MMU etc. * * This function traverses from the lowest to the highest affinity level * implemented by the platform. Since it's recursive, for each call the * 'cur_afflvl' & 'tgt_afflvl' parameters keep track of which level we are at * and which level we need to get to respectively. Locks are picked up along the * way so that when the lowest affinity level is hit, state management can be * safely done. Prior to this, each affinity level does it's bookeeping as per * the state out of reset. * * CAUTION: This function is called with coherent stacks so that coherency and * the mmu can be turned on safely. ******************************************************************************/ unsigned int psci_afflvl_power_on_finish(unsigned long mpidr, int cur_afflvl, int tgt_afflvl, afflvl_power_on_finisher *pon_handlers) { unsigned int prev_state, next_state, rc = PSCI_E_SUCCESS; aff_map_node *aff_node; int level; mpidr &= MPIDR_AFFINITY_MASK;; /* * Some affinity instances at levels between the current and * target levels could be absent in the mpidr. Skip them and * start from the first present instance. */ level = psci_get_first_present_afflvl(mpidr, cur_afflvl, tgt_afflvl, &aff_node); /* * Return if there are no more affinity instances beyond this * level to process. Else ensure that the returned affinity * node makes sense. */ if (aff_node == NULL) return rc; assert(level == aff_node->level); /* * This function acquires the lock corresponding to each * affinity level so that by the time we hit the highest * affinity level, the system topology is snapshot and state * management can be done safely. */ bakery_lock_get(mpidr, &aff_node->lock); /* Keep the old and new state handy */ prev_state = psci_get_state(aff_node->state); next_state = PSCI_STATE_ON; /* Perform generic, architecture and platform specific handling */ rc = pon_handlers[level](mpidr, aff_node, prev_state); if (rc != PSCI_E_SUCCESS) { psci_set_state(aff_node->state, prev_state); goto exit; } /* * State management: Update the states if this is the highest * affinity level requested else pass the job to the next level. */ if (aff_node->level != tgt_afflvl) { rc = psci_afflvl_power_on_finish(mpidr, level + 1, tgt_afflvl, pon_handlers); } else { psci_change_state(mpidr, MPIDR_AFFLVL0, tgt_afflvl, next_state); } /* If all has gone as per plan then this cpu should be marked as ON */ if (level == MPIDR_AFFLVL0) { next_state = psci_get_state(aff_node->state); assert(next_state == PSCI_STATE_ON); } exit: bakery_lock_release(mpidr, &aff_node->lock); return rc; }