/* * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include /* Internal layout of the 32bit OTP word board_id */ #define BOARD_ID_BOARD_NB_MASK GENMASK(31, 16) #define BOARD_ID_BOARD_NB_SHIFT 16 #define BOARD_ID_VARIANT_MASK GENMASK(15, 12) #define BOARD_ID_VARIANT_SHIFT 12 #define BOARD_ID_REVISION_MASK GENMASK(11, 8) #define BOARD_ID_REVISION_SHIFT 8 #define BOARD_ID_BOM_MASK GENMASK(3, 0) #define BOARD_ID2NB(_id) (((_id) & BOARD_ID_BOARD_NB_MASK) >> \ BOARD_ID_BOARD_NB_SHIFT) #define BOARD_ID2VAR(_id) (((_id) & BOARD_ID_VARIANT_MASK) >> \ BOARD_ID_VARIANT_SHIFT) #define BOARD_ID2REV(_id) (((_id) & BOARD_ID_REVISION_MASK) >> \ BOARD_ID_REVISION_SHIFT) #define BOARD_ID2BOM(_id) ((_id) & BOARD_ID_BOM_MASK) #define MAP_SRAM MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \ STM32MP_SYSRAM_SIZE, \ MT_MEMORY | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #define MAP_DEVICE1 MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \ STM32MP1_DEVICE1_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #define MAP_DEVICE2 MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \ STM32MP1_DEVICE2_SIZE, \ MT_DEVICE | \ MT_RW | \ MT_SECURE | \ MT_EXECUTE_NEVER) #if defined(IMAGE_BL2) static const mmap_region_t stm32mp1_mmap[] = { MAP_SRAM, MAP_DEVICE1, MAP_DEVICE2, {0} }; #endif #if defined(IMAGE_BL32) static const mmap_region_t stm32mp1_mmap[] = { MAP_SRAM, MAP_DEVICE1, MAP_DEVICE2, {0} }; #endif void configure_mmu(void) { mmap_add(stm32mp1_mmap); init_xlat_tables(); enable_mmu_svc_mon(0); } unsigned long stm32_get_gpio_bank_clock(unsigned int bank) { if (bank == GPIO_BANK_Z) { return GPIOZ; } assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K); return GPIOA + (bank - GPIO_BANK_A); } static int get_part_number(uint32_t *part_nb) { uint32_t part_number; uint32_t dev_id; if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) { return -1; } if (bsec_shadow_read_otp(&part_number, PART_NUMBER_OTP) != BSEC_OK) { ERROR("BSEC: PART_NUMBER_OTP Error\n"); return -1; } part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >> PART_NUMBER_OTP_PART_SHIFT; *part_nb = part_number | (dev_id << 16); return 0; } static int get_cpu_package(uint32_t *cpu_package) { uint32_t package; if (bsec_shadow_read_otp(&package, PACKAGE_OTP) != BSEC_OK) { ERROR("BSEC: PACKAGE_OTP Error\n"); return -1; } *cpu_package = (package & PACKAGE_OTP_PKG_MASK) >> PACKAGE_OTP_PKG_SHIFT; return 0; } void stm32mp_print_cpuinfo(void) { const char *cpu_s, *cpu_r, *pkg; uint32_t part_number; uint32_t cpu_package; uint32_t chip_dev_id; int ret; /* MPUs Part Numbers */ ret = get_part_number(&part_number); if (ret < 0) { WARN("Cannot get part number\n"); return; } switch (part_number) { case STM32MP157C_PART_NB: cpu_s = "157C"; break; case STM32MP157A_PART_NB: cpu_s = "157A"; break; case STM32MP153C_PART_NB: cpu_s = "153C"; break; case STM32MP153A_PART_NB: cpu_s = "153A"; break; case STM32MP151C_PART_NB: cpu_s = "151C"; break; case STM32MP151A_PART_NB: cpu_s = "151A"; break; default: cpu_s = "????"; break; } /* Package */ ret = get_cpu_package(&cpu_package); if (ret < 0) { WARN("Cannot get CPU package\n"); return; } switch (cpu_package) { case PKG_AA_LFBGA448: pkg = "AA"; break; case PKG_AB_LFBGA354: pkg = "AB"; break; case PKG_AC_TFBGA361: pkg = "AC"; break; case PKG_AD_TFBGA257: pkg = "AD"; break; default: pkg = "??"; break; } /* REVISION */ ret = stm32mp1_dbgmcu_get_chip_version(&chip_dev_id); if (ret < 0) { WARN("Cannot get CPU version\n"); return; } switch (chip_dev_id) { case STM32MP1_REV_B: cpu_r = "B"; break; default: cpu_r = "?"; break; } NOTICE("CPU: STM32MP%s%s Rev.%s\n", cpu_s, pkg, cpu_r); } void stm32mp_print_boardinfo(void) { uint32_t board_id; uint32_t board_otp; int bsec_node, bsec_board_id_node; void *fdt; const fdt32_t *cuint; if (fdt_get_address(&fdt) == 0) { panic(); } bsec_node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT); if (bsec_node < 0) { return; } bsec_board_id_node = fdt_subnode_offset(fdt, bsec_node, "board_id"); if (bsec_board_id_node <= 0) { return; } cuint = fdt_getprop(fdt, bsec_board_id_node, "reg", NULL); if (cuint == NULL) { panic(); } board_otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t); if (bsec_shadow_read_otp(&board_id, board_otp) != BSEC_OK) { ERROR("BSEC: PART_NUMBER_OTP Error\n"); return; } if (board_id != 0U) { char rev[2]; rev[0] = BOARD_ID2REV(board_id) - 1 + 'A'; rev[1] = '\0'; NOTICE("Board: MB%04x Var%d Rev.%s-%02d\n", BOARD_ID2NB(board_id), BOARD_ID2VAR(board_id), rev, BOARD_ID2BOM(board_id)); } } /* Return true when SoC provides a single Cortex-A7 core, and false otherwise */ bool stm32mp_is_single_core(void) { uint32_t part_number; bool ret = false; if (get_part_number(&part_number) < 0) { ERROR("Invalid part number, assume single core chip"); return true; } switch (part_number) { case STM32MP151A_PART_NB: case STM32MP151C_PART_NB: ret = true; break; default: break; } return ret; } /* Return true when device is in closed state */ bool stm32mp_is_closed_device(void) { uint32_t value; if ((bsec_shadow_register(DATA0_OTP) != BSEC_OK) || (bsec_read_otp(&value, DATA0_OTP) != BSEC_OK)) { return true; } return (value & DATA0_OTP_SECURED) == DATA0_OTP_SECURED; } uint32_t stm32_iwdg_get_instance(uintptr_t base) { switch (base) { case IWDG1_BASE: return IWDG1_INST; case IWDG2_BASE: return IWDG2_INST; default: panic(); } } uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst) { uint32_t iwdg_cfg = 0U; uint32_t otp_value; #if defined(IMAGE_BL2) if (bsec_shadow_register(HW2_OTP) != BSEC_OK) { panic(); } #endif if (bsec_read_otp(&otp_value, HW2_OTP) != BSEC_OK) { panic(); } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) { iwdg_cfg |= IWDG_HW_ENABLED; } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) { iwdg_cfg |= IWDG_DISABLE_ON_STOP; } if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) { iwdg_cfg |= IWDG_DISABLE_ON_STANDBY; } return iwdg_cfg; } #if defined(IMAGE_BL2) uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags) { uint32_t otp; uint32_t result; if (bsec_shadow_read_otp(&otp, HW2_OTP) != BSEC_OK) { panic(); } if ((flags & IWDG_DISABLE_ON_STOP) != 0U) { otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS); } if ((flags & IWDG_DISABLE_ON_STANDBY) != 0U) { otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS); } result = bsec_write_otp(otp, HW2_OTP); if (result != BSEC_OK) { return result; } /* Sticky lock OTP_IWDG (read and write) */ if (!bsec_write_sr_lock(HW2_OTP, 1U) || !bsec_write_sw_lock(HW2_OTP, 1U)) { return BSEC_LOCK_FAIL; } return BSEC_OK; } #endif