// SPDX-License-Identifier: BSD-3-Clause /* * NXP FlexSpi Controller Driver. * Copyright 2021 NXP * */ #include #include #include #include #include #include #include "fspi.h" #include #include #ifdef DEBUG_FLEXSPI #define PR printf("In [%s][%d]\n", __func__, __LINE__) #define PRA(a, b) printf("In [%s][%d] %s="a"\n", __func__, __LINE__, #b, b) #else #define PR #define PRA(a, b) #endif /* * This errata is valid for all NXP SoC. */ #define ERRATA_FLASH_A050272 1 static uintptr_t fspi_base_reg_addr; static uintptr_t fspi_flash_base_addr; static void fspi_RDSR(uint32_t *, const void *, uint32_t); static void fspi_writel(uint32_t x_addr, uint32_t x_val) { fspi_out32((uint32_t *)(fspi_base_reg_addr + x_addr), (uint32_t) x_val); } static uint32_t fspi_readl(uint32_t x_addr) { return fspi_in32((uint32_t *)(fspi_base_reg_addr + x_addr)); } static void fspi_MDIS(uint8_t x_disable) { uint32_t ui_reg; ui_reg = fspi_readl(FSPI_MCR0); if (x_disable != 0U) { ui_reg |= FSPI_MCR0_MDIS; } else { ui_reg &= (uint32_t) (~FSPI_MCR0_MDIS); } fspi_writel(FSPI_MCR0, ui_reg); } static void fspi_lock_LUT(void) { fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE); VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); fspi_writel(FSPI_LCKCR, FSPI_LCKER_LOCK); VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); } static void fspi_unlock_LUT(void) { fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE); VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); fspi_writel(FSPI_LCKCR, FSPI_LCKER_UNLOCK); VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); } static void fspi_op_setup(uint32_t fspi_op_seq_id, bool ignore_flash_sz) { uint32_t x_addr, x_instr0 = 0, x_instr1 = 0, x_instr2 = 0; uint32_t cmd_id1, cmd_id2; VERBOSE("In func %s\n", __func__); switch (fspi_op_seq_id) { case FSPI_READ_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_READ; cmd_id2 = FSPI_NOR_CMD_READ_4B; x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE0(FSPI_LUT_READ); break; case FSPI_FASTREAD_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_FASTREAD; cmd_id2 = FSPI_NOR_CMD_FASTREAD_4B; x_instr2 = FSPI_INSTR_OPRND0(8) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE0(FSPI_DUMMY_SDR) | FSPI_INSTR_OPRND1(0) | FSPI_INSTR_PAD1(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE1(FSPI_LUT_READ); break; case FSPI_WRITE_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_PP; cmd_id2 = FSPI_NOR_CMD_PP_4B; x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE0(FSPI_LUT_WRITE); break; case FSPI_WREN_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_WREN; cmd_id2 = FSPI_NOR_CMD_WREN; break; case FSPI_SE_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_SE_64K; cmd_id2 = FSPI_NOR_CMD_SE_64K_4B; break; case FSPI_4K_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_SE_4K; cmd_id2 = FSPI_NOR_CMD_SE_4K_4B; break; case FSPI_BE_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_BE; cmd_id2 = FSPI_NOR_CMD_BE; break; case FSPI_RDSR_SEQ_ID: cmd_id1 = FSPI_NOR_CMD_RDSR; cmd_id2 = FSPI_NOR_CMD_RDSR; break; } x_addr = FSPI_LUTREG_OFFSET + (uint32_t)(0x10 * fspi_op_seq_id); if ((F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) || (ignore_flash_sz)) { x_instr0 = FSPI_INSTR_OPRND0(cmd_id1); x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR24BIT); VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id1, x_addr); } else { x_instr0 = FSPI_INSTR_OPRND0(cmd_id2); x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR32BIT); VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id2, x_addr); } x_instr0 |= FSPI_INSTR_PAD0(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE0(FSPI_LUT_CMD); x_instr1 |= FSPI_INSTR_PAD1(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE1(FSPI_LUT_ADDR); if (fspi_op_seq_id == FSPI_RDSR_SEQ_ID) { x_instr0 |= FSPI_INSTR_OPRND1(1) | FSPI_INSTR_PAD1(FSPI_LUT_PAD1) | FSPI_INSTR_OPCODE1(FSPI_LUT_READ); } else if ((fspi_op_seq_id != FSPI_BE_SEQ_ID) && (fspi_op_seq_id != FSPI_WREN_SEQ_ID)) { x_instr0 |= x_instr1; } fspi_writel((x_addr), x_instr0); fspi_writel((x_addr + U(0x4)), x_instr2); fspi_writel((x_addr + U(0x8)), (uint32_t) 0x0); /* STOP command */ fspi_writel((x_addr + U(0xc)), (uint32_t) 0x0); /* STOP command */ } static void fspi_setup_LUT(void) { VERBOSE("In func %s\n", __func__); fspi_unlock_LUT(); /* LUT Setup for READ Command 3-Byte low Frequency */ fspi_op_setup(FSPI_READ_SEQ_ID, false); /* LUT Setup for FAST READ Command 3-Byte/4-Byte high Frequency */ fspi_op_setup(FSPI_FASTREAD_SEQ_ID, false); /* LUT Setup for Page Program */ fspi_op_setup(FSPI_WRITE_SEQ_ID, false); /* LUT Setup for WREN */ fspi_op_setup(FSPI_WREN_SEQ_ID, true); /* LUT Setup for Sector_Erase */ fspi_op_setup(FSPI_SE_SEQ_ID, false); /* LUT Setup for Sub Sector 4K Erase */ fspi_op_setup(FSPI_4K_SEQ_ID, false); /* LUT Setup for Bulk_Erase */ fspi_op_setup(FSPI_BE_SEQ_ID, true); /* Read Status */ fspi_op_setup(FSPI_RDSR_SEQ_ID, true); fspi_lock_LUT(); } static inline void fspi_ahb_invalidate(void) { uint32_t reg; VERBOSE("In func %s %d\n", __func__, __LINE__); reg = fspi_readl(FSPI_MCR0); reg |= FSPI_MCR0_SWRST; fspi_writel(FSPI_MCR0, reg); while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST) != 0) ; /* FSPI_MCR0_SWRESET_MASK */ VERBOSE("In func %s %d\n", __func__, __LINE__); } #if defined(CONFIG_FSPI_AHB) static void fspi_init_ahb(void) { uint32_t i, x_flash_cr2, seq_id; x_flash_cr2 = 0; /* Reset AHB RX buffer CR configuration */ for (i = 0; i < 8; i++) { fspi_writel((FSPI_AHBRX_BUF0CR0 + 4 * i), 0U); } /* Set ADATSZ with the maximum AHB buffer size */ fspi_writel(FSPI_AHBRX_BUF7CR0, ((uint32_t) ((FSPI_RX_MAX_AHBBUF_SIZE / 8U) | FSPI_AHBRXBUF0CR7_PREF))); /* Known limitation handling: prefetch and * no start address alignment.*/ fspi_writel(FSPI_AHBCR, FSPI_AHBCR_PREF_EN); INFO("xAhbcr=0x%x\n", fspi_readl(FSPI_AHBCR)); // Setup AHB READ sequenceID for all flashes. x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2); INFO("x_flash_cr2=0x%x\n", x_flash_cr2); seq_id = CONFIG_FSPI_FASTREAD ? FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID; x_flash_cr2 |= ((seq_id << FSPI_FLSHXCR2_ARDSEQI_SHIFT) & 0x1f); INFO("x_flash_cr2=0x%x\n", x_flash_cr2); fspi_writel(FSPI_FLSHA1CR2, x_flash_cr2); x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2); INFO("x_flash_cr2=0x%x\n", x_flash_cr2); } #endif int xspi_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes) { if (x_size_bytes == 0) { ERROR("Zero length reads are not allowed\n"); return XSPI_READ_FAIL; } #if defined(CONFIG_FSPI_AHB) return xspi_ahb_read(pc_rx_addr, pc_rx_buf, x_size_bytes); #else return xspi_ip_read(pc_rx_addr, pc_rx_buf, x_size_bytes); #endif } #if defined(CONFIG_FSPI_AHB) int xspi_ahb_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes) { VERBOSE("In func %s 0x%x\n", __func__, (pc_rx_addr)); if (F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) { pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_24BIT_ADDRESS)); } else { pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_32BIT_ADDRESS)); } pc_rx_addr = ((uint32_t)(pcRxAddr + fspi_flash_base_addr)); if (((pc_rx_addr % 4) != 0) || (((uintptr_t)pc_rx_buf % 4) != 0)) { WARN("%s: unaligned Start Address src=%ld dst=0x%p\n", __func__, (pc_rx_addr - fspi_flash_base_addr), pc_rx_buf); } /* Directly copy from AHB Buffer */ memcpy(pc_rx_buf, (void *)(uintptr_t)pc_rx_addr, x_size_bytes); fspi_ahb_invalidate(); return XSPI_SUCCESS; } #endif int xspi_ip_read(uint32_t pc_rx_addr, uint32_t *pv_rx_buf, uint32_t ui_len) { uint32_t i = 0U, j = 0U, x_rem = 0U; uint32_t x_iteration = 0U, x_size_rx = 0U, x_size_wm, temp_size; uint32_t data = 0U; uint32_t x_len_bytes; uint32_t x_addr, sts0, intr, seq_id; x_addr = (uint32_t) pc_rx_addr; x_len_bytes = ui_len; /* Watermark level : 8 bytes. (BY DEFAULT) */ x_size_wm = 8U; /* Clear RX Watermark interrupt in INT register, if any existing. */ fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA); PRA("0x%x", fspi_readl(FSPI_INTR)); /* Invalid the RXFIFO, to run next IP Command */ /* Clears data entries in IP Rx FIFOs, Also reset R/W pointers */ fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR); fspi_writel(FSPI_INTR, FSPI_INTEN_IPCMDDONE); while (x_len_bytes) { /* FlexSPI can store no more than FSPI_RX_IPBUF_SIZE */ x_size_rx = (x_len_bytes > FSPI_RX_IPBUF_SIZE) ? FSPI_RX_IPBUF_SIZE : x_len_bytes; /* IP Control Register0 - SF Address to be read */ fspi_writel(FSPI_IPCR0, x_addr); PRA("0x%x", fspi_readl(FSPI_IPCR0)); /* IP Control Register1 - SEQID_READ operation, Size */ seq_id = CONFIG_FSPI_FASTREAD ? FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID; fspi_writel(FSPI_IPCR1, (uint32_t)(seq_id << FSPI_IPCR1_ISEQID_SHIFT) | (uint16_t) x_size_rx); PRA("0x%x", fspi_readl(FSPI_IPCR1)); do { sts0 = fspi_readl(FSPI_STS0); } while (((sts0 & FSPI_STS0_ARB_IDLE) == 0) && ((sts0 & FSPI_STS0_SEQ_IDLE) == 0)); /* Trigger IP Read Command */ fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); PRA("0x%x", fspi_readl(FSPI_IPCMD)); intr = fspi_readl(FSPI_INTR); if (((intr & FSPI_INTR_IPCMDGE) != 0) || ((intr & FSPI_INTR_IPCMDERR) != 0)) { ERROR("Error in IP READ INTR=0x%x\n", intr); return -XSPI_IP_READ_FAIL; } /* Will read in n iterations of each 8 FIFO's(WM level) */ x_iteration = x_size_rx / x_size_wm; for (i = 0U; i < x_iteration; i++) { if ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK) == 0) { PRA("0x%x", fspi_readl(FSPI_INTR)); } /* Wait for IP Rx Watermark Fill event */ while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK)) { PRA("0x%x", fspi_readl(FSPI_INTR)); } /* Read RX FIFO's(upto WM level) & copy to rxbuffer */ for (j = 0U; j < x_size_wm; j += 4U) { /* Read FIFO Data Register */ data = fspi_readl(FSPI_RFDR + j); #if FSPI_IPDATA_SWAP /* Just In case you want swap */ data = bswap32(data); #endif memcpy(pv_rx_buf++, &data, 4); } /* Clear IP_RX_WATERMARK Event in INTR register */ /* Reset FIFO Read pointer for next iteration.*/ fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA); } x_rem = x_size_rx % x_size_wm; if (x_rem != 0U) { /* Wait for data filled */ while (!(fspi_readl(FSPI_IPRXFSTS) & FSPI_IPRXFSTS_FILL_MASK)) { PRA("0x%x", fspi_readl(FSPI_IPRXFSTS)); } temp_size = 0; j = 0U; while (x_rem > 0U) { data = 0U; data = fspi_readl(FSPI_RFDR + j); #if FSPI_IPDATA_SWAP /* Just In case you want swap */ data = bswap32(data); #endif temp_size = (x_rem < 4) ? x_rem : 4; memcpy(pv_rx_buf++, &data, temp_size); x_rem -= temp_size; } } while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK)) { PRA("0x%x", fspi_readl(FSPI_INTR)); } /* Invalid the RX FIFO, to run next IP Command */ fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR); /* Clear IP Command Done flag in interrupt register*/ fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); /* Update remaining len, Increment x_addr read pointer. */ x_len_bytes -= x_size_rx; x_addr += x_size_rx; } PR; return XSPI_SUCCESS; } void xspi_ip_write(uint32_t pc_wr_addr, uint32_t *pv_wr_buf, uint32_t ui_len) { uint32_t x_iteration = 0U, x_rem = 0U; uint32_t x_size_tx = 0U, x_size_wm, temp_size; uint32_t i = 0U, j = 0U; uint32_t ui_data = 0U; uint32_t x_addr, x_len_bytes; x_size_wm = 8U; /* Default TX WaterMark level: 8 Bytes. */ x_addr = (uint32_t)pc_wr_addr; x_len_bytes = ui_len; VERBOSE("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n", __func__, __LINE__, x_addr, x_len_bytes); while (x_len_bytes != 0U) { x_size_tx = (x_len_bytes > FSPI_TX_IPBUF_SIZE) ? FSPI_TX_IPBUF_SIZE : x_len_bytes; /* IP Control Register0 - SF Address to be read */ fspi_writel(FSPI_IPCR0, x_addr); INFO("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n", __func__, __LINE__, x_addr, x_len_bytes); /* * Fill TX FIFO's.. * */ x_iteration = x_size_tx / x_size_wm; for (i = 0U; i < x_iteration; i++) { /* Ensure TX FIFO Watermark Available */ while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE_MASK) == 0) ; /* Fill TxFIFO's ( upto watermark level) */ for (j = 0U; j < x_size_wm; j += 4U) { memcpy(&ui_data, pv_wr_buf++, 4); /* Write TX FIFO Data Register */ fspi_writel((FSPI_TFDR + j), ui_data); } /* Clear IP_TX_WATERMARK Event in INTR register */ /* Reset the FIFO Write pointer for next iteration */ fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE); } x_rem = x_size_tx % x_size_wm; if (x_rem != 0U) { /* Wait for TXFIFO empty */ while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE)) ; temp_size = 0U; j = 0U; while (x_rem > 0U) { ui_data = 0U; temp_size = (x_rem < 4U) ? x_rem : 4U; memcpy(&ui_data, pv_wr_buf++, temp_size); INFO("%d ---> pv_wr_buf=0x%p\n", __LINE__, pv_wr_buf); fspi_writel((FSPI_TFDR + j), ui_data); x_rem -= temp_size; j += 4U ; /* TODO: May not be needed*/ } /* Clear IP_TX_WATERMARK Event in INTR register */ /* Reset FIFO's Write pointer for next iteration.*/ fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE); } /* IP Control Register1 - SEQID_WRITE operation, Size */ fspi_writel(FSPI_IPCR1, (uint32_t)(FSPI_WRITE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | (uint16_t) x_size_tx); /* Trigger IP Write Command */ fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); /* Wait for IP Write command done */ while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK)) ; /* Invalidate TX FIFOs & acknowledge IP_CMD_DONE event */ fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR); fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); /* for next iteration */ x_len_bytes -= x_size_tx; x_addr += x_size_tx; } } int xspi_write(uint32_t pc_wr_addr, void *pv_wr_buf, uint32_t ui_len) { uint32_t x_addr; uint32_t x_page1_len = 0U, x_page_l_len = 0U; uint32_t i, j = 0U; void *buf = pv_wr_buf; VERBOSE("\nIn func %s\n", __func__); x_addr = (uint32_t)(pc_wr_addr); if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) { x_page1_len = ui_len; INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); } else if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) { x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256)); if (ui_len > x_page1_len) { x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256; } else { x_page1_len = ui_len; x_page_l_len = 0; } j = 0U; INFO("%d 0x%x 0x%x\n", x_addr % F_PAGE_256, x_addr % F_PAGE_256, F_PAGE_256); INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); } else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) { j = ui_len / F_PAGE_256; x_page_l_len = ui_len % F_PAGE_256; INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); } else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) { x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256)); j = (ui_len - x_page1_len) / F_PAGE_256; x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256; INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); } if (x_page1_len != 0U) { xspi_wren(x_addr); xspi_ip_write(x_addr, (uint32_t *)buf, x_page1_len); while (is_flash_busy()) ; INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n", __LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr)); INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf); x_addr += x_page1_len; /* TODO What is buf start is not 4 aligned */ buf = buf + x_page1_len; } for (i = 0U; i < j; i++) { INFO("In for loop Buf pv_wr_buf=%p, final Buf=%p x_addr=0x%x offset_buf %d.\n", pv_wr_buf, buf, x_addr, x_page1_len/4); xspi_wren(x_addr); xspi_ip_write(x_addr, (uint32_t *)buf, F_PAGE_256); while (is_flash_busy()) ; INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n", __LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr)); x_addr += F_PAGE_256; /* TODO What is buf start is not 4 aligned */ buf = buf + F_PAGE_256; INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf); } if (x_page_l_len != 0U) { INFO("%d Initial Buf pv_wr_buf=%p, final Buf=%p x_page_l_len=0x%x\n", __LINE__, pv_wr_buf, buf, x_page_l_len); xspi_wren(x_addr); xspi_ip_write(x_addr, (uint32_t *)buf, x_page_l_len); while (is_flash_busy()) ; INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n", __LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr)); } VERBOSE("Now calling func call Invalidate%s\n", __func__); fspi_ahb_invalidate(); return XSPI_SUCCESS; } int xspi_wren(uint32_t pc_wr_addr) { VERBOSE("In func %s Addr=0x%x\n", __func__, pc_wr_addr); fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR); fspi_writel(FSPI_IPCR0, (uint32_t)pc_wr_addr); fspi_writel(FSPI_IPCR1, ((FSPI_WREN_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0)); fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) ; fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); return XSPI_SUCCESS; } static void fspi_bbluk_er(void) { VERBOSE("In func %s\n", __func__); fspi_writel(FSPI_IPCR0, 0x0); fspi_writel(FSPI_IPCR1, ((FSPI_BE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 20)); fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) ; fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); } static void fspi_RDSR(uint32_t *rxbuf, const void *p_addr, uint32_t size) { uint32_t iprxfcr = 0U; uint32_t data = 0U; iprxfcr = fspi_readl(FSPI_IPRXFCR); /* IP RX FIFO would be read by processor */ iprxfcr = iprxfcr & (uint32_t)~FSPI_IPRXFCR_CLR; /* Invalid data entries in IP RX FIFO */ iprxfcr = iprxfcr | FSPI_IPRXFCR_CLR; fspi_writel(FSPI_IPRXFCR, iprxfcr); fspi_writel(FSPI_IPCR0, (uintptr_t) p_addr); fspi_writel(FSPI_IPCR1, (uint32_t) ((FSPI_RDSR_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | (uint16_t) size)); /* Trigger the command */ fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); /* Wait for command done */ while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) ; fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); data = fspi_readl(FSPI_RFDR); memcpy(rxbuf, &data, size); /* Rx FIFO invalidation needs to be done prior w1c of INTR.IPRXWA bit */ fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR); fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA_MASK); fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); } bool is_flash_busy(void) { #define FSPI_ONE_BYTE 1 uint8_t data[4]; VERBOSE("In func %s\n\n", __func__); fspi_RDSR((uint32_t *) data, 0, FSPI_ONE_BYTE); return !!((uint32_t) data[0] & FSPI_NOR_SR_WIP_MASK); } int xspi_bulk_erase(void) { VERBOSE("In func %s\n", __func__); xspi_wren((uint32_t) 0x0); fspi_bbluk_er(); while (is_flash_busy()) ; fspi_ahb_invalidate(); return XSPI_SUCCESS; } static void fspi_sec_er(uint32_t pc_wr_addr) { uint32_t x_addr; VERBOSE("In func %s\n", __func__); x_addr = (uint32_t)(pc_wr_addr); fspi_writel(FSPI_IPCR0, x_addr); INFO("In [%s][%d] Erase address 0x%x\n", __func__, __LINE__, (x_addr)); #if CONFIG_FSPI_ERASE_4K fspi_writel(FSPI_IPCR1, ((FSPI_4K_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0)); #else fspi_writel(FSPI_IPCR1, ((FSPI_SE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0)); #endif fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) { PRA("0x%x", fspi_readl(FSPI_INTR)); } fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); } int xspi_sector_erase(uint32_t pc_wr_addr, uint32_t ui_len) { uint32_t x_addr, x_len_bytes, i, num_sector = 0U; VERBOSE("In func %s\n", __func__); x_addr = (uint32_t)(pc_wr_addr); if ((x_addr % F_SECTOR_ERASE_SZ) != 0) { ERROR("!!! In func %s, unalinged start address can only be in multiples of 0x%x\n", __func__, F_SECTOR_ERASE_SZ); return -XSPI_ERASE_FAIL; } x_len_bytes = ui_len * 1; if (x_len_bytes < F_SECTOR_ERASE_SZ) { ERROR("!!! In func %s, Less than 1 sector can only be in multiples of 0x%x\n", __func__, F_SECTOR_ERASE_SZ); return -XSPI_ERASE_FAIL; } num_sector = x_len_bytes/F_SECTOR_ERASE_SZ; num_sector += x_len_bytes % F_SECTOR_ERASE_SZ ? 1U : 0U; INFO("F_SECTOR_ERASE_SZ: 0x%08x, num_sector: %d\n", F_SECTOR_ERASE_SZ, num_sector); for (i = 0U; i < num_sector ; i++) { xspi_wren(x_addr + (F_SECTOR_ERASE_SZ * i)); fspi_sec_er(x_addr + (F_SECTOR_ERASE_SZ * i)); while (is_flash_busy()) ; } fspi_ahb_invalidate(); return XSPI_SUCCESS; } __attribute__((unused)) static void fspi_delay_ms(uint32_t x) { volatile unsigned long ul_count; for (ul_count = 0U; ul_count < (30U * x); ul_count++) ; } #if defined(DEBUG_FLEXSPI) static void fspi_dump_regs(void) { uint32_t i; VERBOSE("\nRegisters Dump:\n"); VERBOSE("Flexspi: Register FSPI_MCR0(0x%x) = 0x%08x\n", FSPI_MCR0, fspi_readl(FSPI_MCR0)); VERBOSE("Flexspi: Register FSPI_MCR2(0x%x) = 0x%08x\n", FSPI_MCR2, fspi_readl(FSPI_MCR2)); VERBOSE("Flexspi: Register FSPI_DLL_A_CR(0x%x) = 0x%08x\n", FSPI_DLLACR, fspi_readl(FSPI_DLLACR)); VERBOSE("\n"); for (i = 0U; i < 8U; i++) { VERBOSE("Flexspi: Register FSPI_AHBRX_BUF0CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF0CR0 + i * 4, fspi_readl((FSPI_AHBRX_BUF0CR0 + i * 4))); } VERBOSE("\n"); VERBOSE("Flexspi: Register FSPI_AHBRX_BUF7CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF7CR0, fspi_readl(FSPI_AHBRX_BUF7CR0)); VERBOSE("Flexspi: Register FSPI_AHB_CR(0x%x) \t = 0x%08x\n", FSPI_AHBCR, fspi_readl(FSPI_AHBCR)); VERBOSE("\n"); for (i = 0U; i < 4U; i++) { VERBOSE("Flexspi: Register FSPI_FLSH_A1_CR2,(0x%x) = 0x%08x\n", FSPI_FLSHA1CR2 + i * 4, fspi_readl(FSPI_FLSHA1CR2 + i * 4)); } } #endif int fspi_init(uint32_t base_reg_addr, uint32_t flash_start_addr) { uint32_t mcrx; uint32_t flash_size; if (fspi_base_reg_addr != 0U) { INFO("FSPI is already initialized.\n"); return XSPI_SUCCESS; } fspi_base_reg_addr = base_reg_addr; fspi_flash_base_addr = flash_start_addr; INFO("Flexspi driver: Version v1.0\n"); INFO("Flexspi: Default MCR0 = 0x%08x, before reset\n", fspi_readl(FSPI_MCR0)); VERBOSE("Flexspi: Resetting controller...\n"); /* Reset FlexSpi Controller */ fspi_writel(FSPI_MCR0, FSPI_MCR0_SWRST); while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST)) ; /* FSPI_MCR0_SWRESET_MASK */ /* Disable Controller Module before programming its registersi, especially MCR0 (Master Control Register0) */ fspi_MDIS(1); /* * Program MCR0 with default values, AHB Timeout(0xff), IP Timeout(0xff). {FSPI_MCR0- 0xFFFF0000} */ /* Timeout wait cycle for AHB command grant */ mcrx = fspi_readl(FSPI_MCR0); mcrx |= (uint32_t)((FSPI_MAX_TIMEOUT_AHBCMD << FSPI_MCR0_AHBGRANTWAIT_SHIFT) & (FSPI_MCR0_AHBGRANTWAIT_MASK)); /* Time out wait cycle for IP command grant*/ mcrx |= (uint32_t) (FSPI_MAX_TIMEOUT_IPCMD << FSPI_MCR0_IPGRANTWAIT_SHIFT) & (FSPI_MCR0_IPGRANTWAIT_MASK); /* TODO why BE64 set BE32*/ mcrx |= (uint32_t) (FSPI_ENDCFG_LE64 << FSPI_MCR0_ENDCFG_SHIFT) & FSPI_MCR0_ENDCFG_MASK; fspi_writel(FSPI_MCR0, mcrx); /* Reset the DLL register to default value */ fspi_writel(FSPI_DLLACR, FSPI_DLLACR_OVRDEN); fspi_writel(FSPI_DLLBCR, FSPI_DLLBCR_OVRDEN); #if ERRATA_FLASH_A050272 /* ERRATA DLL */ for (uint8_t delay = 100U; delay > 0U; delay--) { __asm__ volatile ("nop"); } #endif /* Configure flash control registers for different chip select */ flash_size = (F_FLASH_SIZE_BYTES * FLASH_NUM) / FSPI_BYTES_PER_KBYTES; fspi_writel(FSPI_FLSHA1CR0, flash_size); fspi_writel(FSPI_FLSHA2CR0, 0U); fspi_writel(FSPI_FLSHB1CR0, 0U); fspi_writel(FSPI_FLSHB2CR0, 0U); #if defined(CONFIG_FSPI_AHB) fspi_init_ahb(); #endif /* RE-Enable Controller Module */ fspi_MDIS(0); INFO("Flexspi: After MCR0 = 0x%08x,\n", fspi_readl(FSPI_MCR0)); fspi_setup_LUT(); /* Dump of all registers, ensure controller not disabled anymore*/ #if defined(DEBUG_FLEXSPI) fspi_dump_regs(); #endif INFO("Flexspi: Init done!!\n"); #if DEBUG_FLEXSPI uint32_t xspi_addr = SZ_57M; /* * Second argument of fspi_test is the size of buffer(s) passed * to the function. * SIZE_BUFFER defined in test_fspi.c is kept large enough to * accommodate variety of sizes for regressive tests. */ fspi_test(xspi_addr, 0x40, 0); fspi_test(xspi_addr, 0x15, 2); fspi_test(xspi_addr, 0x80, 0); fspi_test(xspi_addr, 0x81, 0); fspi_test(xspi_addr, 0x79, 3); fspi_test(xspi_addr + 0x11, 0x15, 0); fspi_test(xspi_addr + 0x11, 0x40, 0); fspi_test(xspi_addr + 0xff, 0x40, 1); fspi_test(xspi_addr + 0x25, 0x81, 2); fspi_test(xspi_addr + 0xef, 0x6f, 3); fspi_test((xspi_addr - F_SECTOR_ERASE_SZ), 0x229, 0); #endif return XSPI_SUCCESS; }