/* * Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include static void sgrf_ddr_rgn_global_bypass(uint32_t bypass) { if (bypass) /* set bypass (non-secure regions) for whole ddr regions */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), SGRF_DDR_RGN_BYPS); else /* cancel bypass for whole ddr regions */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), SGRF_DDR_RGN_NO_BYPS); } /** * There are 8 + 1 regions for DDR secure control: * DDR_RGN_0 ~ DDR_RGN_7: Per DDR_RGNs grain size is 1MB * DDR_RGN_X - the memories of exclude DDR_RGN_0 ~ DDR_RGN_7 * * DDR_RGN_0 - start address of the RGN0 * DDR_RGN_8 - end address of the RGN0 * DDR_RGN_1 - start address of the RGN1 * DDR_RGN_9 - end address of the RGN1 * ... * DDR_RGN_7 - start address of the RGN7 * DDR_RGN_15 - end address of the RGN7 * DDR_RGN_16 - bit 0 ~ 7 is bitmap for RGN0~7 secure,0: disable, 1: enable * bit 8 is setting for RGNx, the rest of the memory and region * which excludes RGN0~7, 0: disable, 1: enable * bit 9, the global secure configuration via bypass, 0: disable * bypass, 1: enable bypass * * @rgn - the DDR regions 0 ~ 7 which are can be configured. * @st - start address to set as secure * @sz - length of area to set as secure * The @st_mb and @ed_mb indicate the start and end addresses for which to set * the security, and the unit is megabyte. When the st_mb == 0, ed_mb == 0, the * address range 0x0 ~ 0xfffff is secure. * * For example, if we would like to set the range [0, 32MB) is security via * DDR_RGN0, then rgn == 0, st_mb == 0, ed_mb == 31. */ static void sgrf_ddr_rgn_config(uint32_t rgn, uintptr_t st, size_t sz) { uintptr_t ed = st + sz; uintptr_t st_mb, ed_mb; assert(rgn <= 7); assert(st < ed); /* check aligned 1MB */ assert(st % SIZE_M(1) == 0); assert(ed % SIZE_M(1) == 0); st_mb = st / SIZE_M(1); ed_mb = ed / SIZE_M(1); /* set ddr region addr start */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(rgn), BITS_WITH_WMASK(st_mb, SGRF_DDR_RGN_0_16_WMSK, 0)); /* set ddr region addr end */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(rgn + 8), BITS_WITH_WMASK((ed_mb - 1), SGRF_DDR_RGN_0_16_WMSK, 0)); mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), BIT_WITH_WMSK(rgn)); } void secure_watchdog_gate(void) { /** * Disable CA53 and CM0 wdt pclk * BIT[8]: ca53 wdt pclk, 0: enable 1: disable * BIT[10]: cm0 wdt pclk, 0: enable 1: disable */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON(3), BIT_WITH_WMSK(PCLK_WDT_CA53_GATE_SHIFT) | BIT_WITH_WMSK(PCLK_WDT_CM0_GATE_SHIFT)); } __pmusramfunc void secure_watchdog_ungate(void) { /** * Enable CA53 and CM0 wdt pclk * BIT[8]: ca53 wdt pclk, 0: enable 1: disable * BIT[10]: cm0 wdt pclk, 0: enable 1: disable */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON(3), WMSK_BIT(PCLK_WDT_CA53_GATE_SHIFT) | WMSK_BIT(PCLK_WDT_CM0_GATE_SHIFT)); } __pmusramfunc void sram_secure_timer_init(void) { mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_END_COUNT0, 0xffffffff); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_END_COUNT1, 0xffffffff); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_INIT_COUNT0, 0x0); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_INIT_COUNT0, 0x0); /* auto reload & enable the timer */ mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_CONTROL_REG, TIMER_EN | TIMER_FMODE); } void secure_timer_init(void) { mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_END_COUNT0, 0xffffffff); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_END_COUNT1, 0xffffffff); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_INIT_COUNT0, 0x0); mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_INIT_COUNT0, 0x0); /* auto reload & enable the timer */ mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_CONTROL_REG, TIMER_EN | TIMER_FMODE); } void secure_sgrf_init(void) { /* security config for master */ mmio_write_32(SGRF_BASE + SGRF_SOC_CON(5), REG_SOC_WMSK | SGRF_SOC_ALLMST_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON(6), REG_SOC_WMSK | SGRF_SOC_ALLMST_NS); mmio_write_32(SGRF_BASE + SGRF_SOC_CON(7), REG_SOC_WMSK | SGRF_SOC_ALLMST_NS); /* security config for slave */ mmio_write_32(SGRF_BASE + SGRF_PMU_SLV_CON0_1(0), SGRF_PMU_SLV_S_CFGED | SGRF_PMU_SLV_CRYPTO1_NS); mmio_write_32(SGRF_BASE + SGRF_PMU_SLV_CON0_1(1), SGRF_SLV_S_WMSK | SGRF_PMUSRAM_S); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(0), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(1), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(2), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(3), SGRF_SLV_S_WMSK | SGRF_SLV_S_ALL_NS); mmio_write_32(SGRF_BASE + SGRF_SLV_SECURE_CON0_4(4), SGRF_SLV_S_WMSK | SGRF_INTSRAM_S); } void secure_sgrf_ddr_rgn_init(void) { sgrf_ddr_rgn_config(0, TZRAM_BASE, TZRAM_SIZE); sgrf_ddr_rgn_global_bypass(0); }