/* * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const unsigned long BL31_COHERENT_RAM_START = BL_COHERENT_RAM_BASE; static const unsigned long BL31_COHERENT_RAM_END = BL_COHERENT_RAM_END; static const unsigned long BL31_RO_START = BL_CODE_BASE; static const unsigned long BL31_RO_END = BL_CODE_END; static const unsigned long BL31_RW_END = BL_END; IMPORT_SYM(unsigned long, __RW_START__, BL31_RW_START); static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl33_image_ep_info; /* Default configuration for i.MX8QM/QXP MEK */ #if defined(IMX_USE_UART0) #define UART_PAD_CTRL (PADRING_IFMUX_EN_MASK | PADRING_GP_EN_MASK | \ (SC_PAD_CONFIG_OUT_IN << PADRING_CONFIG_SHIFT) | \ (SC_PAD_ISO_OFF << PADRING_LPCONFIG_SHIFT) | \ (SC_PAD_28FDSOI_DSE_DV_LOW << PADRING_DSE_SHIFT) | \ (SC_PAD_28FDSOI_PS_PD << PADRING_PULL_SHIFT)) #define IMX_RES_UART SC_R_UART_0 #define IMX_PAD_UART_RX SC_P_UART0_RX #define IMX_PAD_UART_TX SC_P_UART0_TX /* * On Toradex Colibri i.MX8QXP UART3 on the FLEXCAN2. * Use custom pad control for this */ #elif defined(IMX_USE_UART3) /* * FLEXCAN2_RX/TX pads are muxed to ADMA_UART3_RX/TX, * For ref: * 000b - ADMA_FLEXCAN2_RX * 001b - ADMA_SAI3_RXD * 010b - ADMA_UART3_RX * 011b - ADMA_SAI1_RXFS * 100b - LSIO_GPIO1_IO19 */ #define UART_PAD_CTRL (PADRING_IFMUX_EN_MASK | PADRING_GP_EN_MASK | \ (SC_PAD_CONFIG_OUT_IN << PADRING_CONFIG_SHIFT) | \ (2U << PADRING_IFMUX_SHIFT) | \ (SC_PAD_ISO_OFF << PADRING_LPCONFIG_SHIFT) | \ (SC_PAD_28FDSOI_DSE_DV_LOW << PADRING_DSE_SHIFT) | \ (SC_PAD_28FDSOI_PS_PD << PADRING_PULL_SHIFT)) #define IMX_RES_UART SC_R_UART_3 #define IMX_PAD_UART_RX SC_P_FLEXCAN2_RX #define IMX_PAD_UART_TX SC_P_FLEXCAN2_TX #else #error "Provide proper UART configuration in IMX_DEBUG_UART" #endif static const mmap_region_t imx_mmap[] = { MAP_REGION_FLAT(IMX_REG_BASE, IMX_REG_SIZE, MT_DEVICE | MT_RW), {0} }; static uint32_t get_spsr_for_bl33_entry(void) { unsigned long el_status; unsigned long mode; uint32_t spsr; /* figure out what mode we enter the non-secure world */ el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT; el_status &= ID_AA64PFR0_ELX_MASK; mode = (el_status) ? MODE_EL2 : MODE_EL1; spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); return spsr; } #if DEBUG_CONSOLE_A35 static void lpuart32_serial_setbrg(unsigned int base, int baudrate) { unsigned int sbr, osr, baud_diff, tmp_osr, tmp_sbr; unsigned int diff1, diff2, tmp, rate; if (baudrate == 0) panic(); sc_pm_get_clock_rate(ipc_handle, IMX_RES_UART, 2, &rate); baud_diff = baudrate; osr = 0; sbr = 0; for (tmp_osr = 4; tmp_osr <= 32; tmp_osr++) { tmp_sbr = (rate / (baudrate * tmp_osr)); if (tmp_sbr == 0) tmp_sbr = 1; /* calculate difference in actual baud w/ current values */ diff1 = rate / (tmp_osr * tmp_sbr) - baudrate; diff2 = rate / (tmp_osr * (tmp_sbr + 1)); /* select best values between sbr and sbr+1 */ if (diff1 > (baudrate - diff2)) { diff1 = baudrate - diff2; tmp_sbr++; } if (diff1 <= baud_diff) { baud_diff = diff1; osr = tmp_osr; sbr = tmp_sbr; } } tmp = mmio_read_32(IMX_BOOT_UART_BASE + BAUD); if ((osr > 3) && (osr < 8)) tmp |= LPUART_BAUD_BOTHEDGE_MASK; tmp &= ~LPUART_BAUD_OSR_MASK; tmp |= LPUART_BAUD_OSR(osr - 1); tmp &= ~LPUART_BAUD_SBR_MASK; tmp |= LPUART_BAUD_SBR(sbr); /* explicitly disable 10 bit mode & set 1 stop bit */ tmp &= ~(LPUART_BAUD_M10_MASK | LPUART_BAUD_SBNS_MASK); mmio_write_32(IMX_BOOT_UART_BASE + BAUD, tmp); } static int lpuart32_serial_init(unsigned int base) { unsigned int tmp; /* disable TX & RX before enabling clocks */ tmp = mmio_read_32(IMX_BOOT_UART_BASE + CTRL); tmp &= ~(CTRL_TE | CTRL_RE); mmio_write_32(IMX_BOOT_UART_BASE + CTRL, tmp); mmio_write_32(IMX_BOOT_UART_BASE + MODIR, 0); mmio_write_32(IMX_BOOT_UART_BASE + FIFO, ~(FIFO_TXFE | FIFO_RXFE)); mmio_write_32(IMX_BOOT_UART_BASE + MATCH, 0); /* provide data bits, parity, stop bit, etc */ lpuart32_serial_setbrg(base, IMX_BOOT_UART_BAUDRATE); /* eight data bits no parity bit */ tmp = mmio_read_32(IMX_BOOT_UART_BASE + CTRL); tmp &= ~(LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK | LPUART_CTRL_M_MASK); mmio_write_32(IMX_BOOT_UART_BASE + CTRL, tmp); mmio_write_32(IMX_BOOT_UART_BASE + CTRL, CTRL_RE | CTRL_TE); mmio_write_32(IMX_BOOT_UART_BASE + DATA, 0x55); mmio_write_32(IMX_BOOT_UART_BASE + DATA, 0x55); mmio_write_32(IMX_BOOT_UART_BASE + DATA, 0x0A); return 0; } #endif void imx8_partition_resources(void) { sc_rm_pt_t secure_part, os_part; sc_rm_mr_t mr, mr_record = 64; sc_faddr_t start, end; sc_err_t err; bool owned; int i; err = sc_rm_get_partition(ipc_handle, &secure_part); if (err) ERROR("sc_rm_get_partition failed: %u\n", err); err = sc_rm_partition_alloc(ipc_handle, &os_part, false, false, false, false, false); if (err) ERROR("sc_rm_partition_alloc failed: %u\n", err); err = sc_rm_set_parent(ipc_handle, os_part, secure_part); if (err) ERROR("sc_rm_set_parent: %u\n", err); /* set secure resources to NOT-movable */ for (i = 0; i < (ARRAY_SIZE(secure_rsrcs)); i++) { err = sc_rm_set_resource_movable(ipc_handle, secure_rsrcs[i], secure_rsrcs[i], false); if (err) ERROR("sc_rm_set_resource_movable: rsrc %u, ret %u\n", secure_rsrcs[i], err); } /* move all movable resources and pins to non-secure partition */ err = sc_rm_move_all(ipc_handle, secure_part, os_part, true, true); if (err) ERROR("sc_rm_move_all: %u\n", err); /* iterate through peripherals to give NS OS part access */ for (i = 0; i < ARRAY_SIZE(ns_access_allowed); i++) { err = sc_rm_set_peripheral_permissions(ipc_handle, ns_access_allowed[i], os_part, SC_RM_PERM_FULL); if (err) ERROR("sc_rm_set_peripheral_permissions: rsrc %u, \ ret %u\n", ns_access_allowed[i], err); } /* * sc_rm_set_peripheral_permissions * sc_rm_set_memreg_permissions * sc_rm_set_pin_movable */ for (mr = 0; mr < 64; mr++) { owned = sc_rm_is_memreg_owned(ipc_handle, mr); if (owned) { err = sc_rm_get_memreg_info(ipc_handle, mr, &start, &end); if (err) ERROR("Memreg get info failed, %u\n", mr); NOTICE("Memreg %u 0x%llx -- 0x%llx\n", mr, start, end); if (BL31_BASE >= start && (BL31_LIMIT - 1) <= end) { mr_record = mr; /* Record the mr for ATF running */ } else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%llx -- 0x%llx, \ err %d\n", start, end, err); } } } if (mr_record != 64) { err = sc_rm_get_memreg_info(ipc_handle, mr_record, &start, &end); if (err) ERROR("Memreg get info failed, %u\n", mr_record); if ((BL31_LIMIT - 1) < end) { err = sc_rm_memreg_alloc(ipc_handle, &mr, BL31_LIMIT, end); if (err) ERROR("sc_rm_memreg_alloc failed, 0x%llx -- 0x%llx\n", (sc_faddr_t)BL31_LIMIT, end); err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%llx -- 0x%llx\n", (sc_faddr_t)BL31_LIMIT, end); } if (start < (BL31_BASE - 1)) { err = sc_rm_memreg_alloc(ipc_handle, &mr, start, BL31_BASE - 1); if (err) ERROR("sc_rm_memreg_alloc failed, 0x%llx -- 0x%llx\n", start, (sc_faddr_t)BL31_BASE - 1); err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%llx -- 0x%llx\n", start, (sc_faddr_t)BL31_BASE - 1); } } if (err) NOTICE("Partitioning Failed\n"); else NOTICE("Non-secure Partitioning Succeeded\n"); } void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3) { #if DEBUG_CONSOLE static console_t console; #endif if (sc_ipc_open(&ipc_handle, SC_IPC_BASE) != SC_ERR_NONE) panic(); #if DEBUG_CONSOLE_A35 sc_pm_set_resource_power_mode(ipc_handle, IMX_RES_UART, SC_PM_PW_MODE_ON); sc_pm_clock_rate_t rate = 80000000; sc_pm_set_clock_rate(ipc_handle, IMX_RES_UART, 2, &rate); sc_pm_clock_enable(ipc_handle, IMX_RES_UART, 2, true, false); /* Configure UART pads */ sc_pad_set(ipc_handle, IMX_PAD_UART_RX, UART_PAD_CTRL); sc_pad_set(ipc_handle, IMX_PAD_UART_TX, UART_PAD_CTRL); lpuart32_serial_init(IMX_BOOT_UART_BASE); #endif #if DEBUG_CONSOLE console_lpuart_register(IMX_BOOT_UART_BASE, IMX_BOOT_UART_CLK_IN_HZ, IMX_CONSOLE_BAUDRATE, &console); #endif /* Turn on MU1 for non-secure OS/Hypervisor */ sc_pm_set_resource_power_mode(ipc_handle, SC_R_MU_1A, SC_PM_PW_MODE_ON); /* Turn on GPT_0's power & clock for non-secure OS/Hypervisor */ sc_pm_set_resource_power_mode(ipc_handle, SC_R_GPT_0, SC_PM_PW_MODE_ON); sc_pm_clock_enable(ipc_handle, SC_R_GPT_0, SC_PM_CLK_PER, true, 0); mmio_write_32(IMX_GPT0_LPCG_BASE, mmio_read_32(IMX_GPT0_LPCG_BASE) | (1 << 25)); /* * create new partition for non-secure OS/Hypervisor * uses global structs defined in sec_rsrc.h */ imx8_partition_resources(); bl33_image_ep_info.pc = PLAT_NS_IMAGE_OFFSET; bl33_image_ep_info.spsr = get_spsr_for_bl33_entry(); SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); } void bl31_plat_arch_setup(void) { unsigned long ro_start = BL31_RO_START; unsigned long ro_size = BL31_RO_END - BL31_RO_START; unsigned long rw_start = BL31_RW_START; unsigned long rw_size = BL31_RW_END - BL31_RW_START; #if USE_COHERENT_MEM unsigned long coh_start = BL31_COHERENT_RAM_START; unsigned long coh_size = BL31_COHERENT_RAM_END - BL31_COHERENT_RAM_START; #endif mmap_add_region(ro_start, ro_start, ro_size, MT_RO | MT_MEMORY | MT_SECURE); mmap_add_region(rw_start, rw_start, rw_size, MT_RW | MT_MEMORY | MT_SECURE); mmap_add(imx_mmap); #if USE_COHERENT_MEM mmap_add_region(coh_start, coh_start, coh_size, MT_DEVICE | MT_RW | MT_SECURE); #endif init_xlat_tables(); enable_mmu_el3(0); } void bl31_platform_setup(void) { plat_gic_driver_init(); plat_gic_init(); } entry_point_info_t *bl31_plat_get_next_image_ep_info(unsigned int type) { if (type == NON_SECURE) return &bl33_image_ep_info; if (type == SECURE) return &bl32_image_ep_info; return NULL; } unsigned int plat_get_syscnt_freq2(void) { return COUNTER_FREQUENCY; } void bl31_plat_runtime_setup(void) { return; }