/* * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include "spm_private.h" #include "spm_shim_private.h" /* Setup context of the Secure Partition */ void spm_sp_setup(sp_context_t *sp_ctx) { cpu_context_t *ctx = &(sp_ctx->cpu_ctx); /* * Initialize CPU context * ---------------------- */ entry_point_info_t ep_info = {0}; SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE); /* Setup entrypoint and SPSR */ ep_info.pc = BL32_BASE; ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS); /* * X0: Virtual address of a buffer shared between EL3 and Secure EL0. * The buffer will be mapped in the Secure EL1 translation regime * with Normal IS WBWA attributes and RO data and Execute Never * instruction access permissions. * * X1: Size of the buffer in bytes * * X2: cookie value (Implementation Defined) * * X3: cookie value (Implementation Defined) * * X4 to X7 = 0 */ ep_info.args.arg0 = PLAT_SPM_BUF_BASE; ep_info.args.arg1 = PLAT_SPM_BUF_SIZE; ep_info.args.arg2 = PLAT_SPM_COOKIE_0; ep_info.args.arg3 = PLAT_SPM_COOKIE_1; cm_setup_context(ctx, &ep_info); /* * SP_EL0: A non-zero value will indicate to the SP that the SPM has * initialized the stack pointer for the current CPU through * implementation defined means. The value will be 0 otherwise. */ write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0, PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE); /* * Setup translation tables * ------------------------ */ #if ENABLE_ASSERTIONS /* Get max granularity supported by the platform. */ unsigned int max_granule = xlat_arch_get_max_supported_granule_size(); VERBOSE("Max translation granule size supported: %u KiB\n", max_granule / 1024U); unsigned int max_granule_mask = max_granule - 1U; /* Base must be aligned to the max granularity */ assert((PLAT_SP_IMAGE_NS_BUF_BASE & max_granule_mask) == 0); /* Size must be a multiple of the max granularity */ assert((PLAT_SP_IMAGE_NS_BUF_SIZE & max_granule_mask) == 0); #endif /* ENABLE_ASSERTIONS */ /* This region contains the exception vectors used at S-EL1. */ const mmap_region_t sel1_exception_vectors = MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START, SPM_SHIM_EXCEPTIONS_SIZE, MT_CODE | MT_SECURE | MT_PRIVILEGED); mmap_add_region_ctx(sp_ctx->xlat_ctx_handle, &sel1_exception_vectors); mmap_add_ctx(sp_ctx->xlat_ctx_handle, plat_get_secure_partition_mmap(NULL)); init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle); /* * MMU-related registers * --------------------- */ xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle; uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX]; setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table, xlat_ctx->pa_max_address, xlat_ctx->va_max_address, EL1_EL0_REGIME); write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1, mmu_cfg_params[MMU_CFG_MAIR]); write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1, mmu_cfg_params[MMU_CFG_TCR]); write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1, mmu_cfg_params[MMU_CFG_TTBR0]); /* Setup SCTLR_EL1 */ u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1); sctlr_el1 |= /*SCTLR_EL1_RES1 |*/ /* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */ SCTLR_UCI_BIT | /* RW regions at xlat regime EL1&0 are forced to be XN. */ SCTLR_WXN_BIT | /* Don't trap to EL1 execution of WFI or WFE at EL0. */ SCTLR_NTWI_BIT | SCTLR_NTWE_BIT | /* Don't trap to EL1 accesses to CTR_EL0 from EL0. */ SCTLR_UCT_BIT | /* Don't trap to EL1 execution of DZ ZVA at EL0. */ SCTLR_DZE_BIT | /* Enable SP Alignment check for EL0 */ SCTLR_SA0_BIT | /* Allow cacheable data and instr. accesses to normal memory. */ SCTLR_C_BIT | SCTLR_I_BIT | /* Enable MMU. */ SCTLR_M_BIT ; sctlr_el1 &= ~( /* Explicit data accesses at EL0 are little-endian. */ SCTLR_E0E_BIT | /* * Alignment fault checking disabled when at EL1 and EL0 as * the UEFI spec permits unaligned accesses. */ SCTLR_A_BIT | /* Accesses to DAIF from EL0 are trapped to EL1. */ SCTLR_UMA_BIT ); write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1); /* * Setup other system registers * ---------------------------- */ /* Shim Exception Vector Base Address */ write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1, SPM_SHIM_EXCEPTIONS_PTR); write_ctx_reg(get_sysregs_ctx(ctx), CTX_CNTKCTL_EL1, EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT); /* * FPEN: Allow the Secure Partition to access FP/SIMD registers. * Note that SPM will not do any saving/restoring of these registers on * behalf of the SP. This falls under the SP's responsibility. * TTA: Enable access to trace registers. * ZEN (v8.2): Trap SVE instructions and access to SVE registers. */ write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1, CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE)); /* * Prepare information in buffer shared between EL3 and S-EL0 * ---------------------------------------------------------- */ void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE; /* Copy the boot information into the shared buffer with the SP. */ assert((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t) <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE)); assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1)); const secure_partition_boot_info_t *sp_boot_info = plat_get_secure_partition_boot_info(NULL); assert(sp_boot_info != NULL); memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info, sizeof(secure_partition_boot_info_t)); /* Pointer to the MP information from the platform port. */ secure_partition_mp_info_t *sp_mp_info = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info; assert(sp_mp_info != NULL); /* * Point the shared buffer MP information pointer to where the info will * be populated, just after the boot info. */ ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info = (secure_partition_mp_info_t *) ((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t)); /* * Update the shared buffer pointer to where the MP information for the * payload will be populated */ shared_buf_ptr = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info; /* * Copy the cpu information into the shared buffer area after the boot * information. */ assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT); assert((uintptr_t)shared_buf_ptr <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE - (sp_boot_info->num_cpus * sizeof(*sp_mp_info)))); memcpy(shared_buf_ptr, (const void *) sp_mp_info, sp_boot_info->num_cpus * sizeof(*sp_mp_info)); /* * Calculate the linear indices of cores in boot information for the * secure partition and flag the primary CPU */ sp_mp_info = (secure_partition_mp_info_t *) shared_buf_ptr; for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) { u_register_t mpidr = sp_mp_info[index].mpidr; sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr); if (plat_my_core_pos() == sp_mp_info[index].linear_id) sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU; } }