/* * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../qemu_private.h" #if RESET_TO_SP_MIN #error qemu does not support RESET_TO_SP_MIN #endif static entry_point_info_t bl33_image_ep_info; /* * The next 3 constants identify the extents of the code, RO data region and the * limit of the BL3-1 image. These addresses are used by the MMU setup code and * therefore they must be page-aligned. It is the responsibility of the linker * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols * refer to page-aligned addresses. */ #define BL32_RO_BASE (unsigned long)(&__RO_START__) #define BL32_RO_LIMIT (unsigned long)(&__RO_END__) #define BL32_END (unsigned long)(&__BL32_END__) #if USE_COHERENT_MEM /* * The next 2 constants identify the extents of the coherent memory region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols * refer to page-aligned addresses. */ #define BL32_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL32_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) #endif /****************************************************************************** * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0 * interrupts. *****************************************************************************/ #define PLATFORM_G1S_PROPS(grp) \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL), \ INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY, \ grp, GIC_INTR_CFG_LEVEL) #define PLATFORM_G0_PROPS(grp) static const interrupt_prop_t stih410_interrupt_props[] = { PLATFORM_G1S_PROPS(GICV2_INTR_GROUP0), PLATFORM_G0_PROPS(GICV2_INTR_GROUP0) }; static unsigned int target_mask_array[PLATFORM_CORE_COUNT]; static const struct gicv2_driver_data plat_gicv2_driver_data = { .gicd_base = GICD_BASE, .gicc_base = GICC_BASE, .interrupt_props = stih410_interrupt_props, .interrupt_props_num = ARRAY_SIZE(stih410_interrupt_props), .target_masks = target_mask_array, .target_masks_num = ARRAY_SIZE(target_mask_array), }; /******************************************************************************* * Return a pointer to the 'entry_point_info' structure of the next image for * the security state specified. BL33 corresponds to the non-secure image type * while BL32 corresponds to the secure image type. A NULL pointer is returned * if the image does not exist. ******************************************************************************/ entry_point_info_t *sp_min_plat_get_bl33_ep_info(void) { entry_point_info_t *next_image_info = &bl33_image_ep_info; /* * None of the images on the ARM development platforms can have 0x0 * as the entrypoint */ if (next_image_info->pc) return next_image_info; else return NULL; } void sp_min_early_platform_setup(void *from_bl2, void *plat_params_from_bl2) { bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2; /* Initialize the console to provide early debug support */ console_init(PLAT_QEMU_BOOT_UART_BASE, PLAT_QEMU_BOOT_UART_CLK_IN_HZ, PLAT_QEMU_CONSOLE_BAUDRATE); ERROR("qemu sp_min, console init\n"); /* * Check params passed from BL2 */ assert(params_from_bl2); assert(params_from_bl2->h.type == PARAM_BL_PARAMS); assert(params_from_bl2->h.version >= VERSION_2); bl_params_node_t *bl_params = params_from_bl2->head; /* * Copy BL33 entry point information from BL2's address space. */ while (bl_params) { if (bl_params->image_id == BL33_IMAGE_ID) bl33_image_ep_info = *bl_params->ep_info; bl_params = bl_params->next_params_info; } if (!bl33_image_ep_info.pc) panic(); } void sp_min_plat_arch_setup(void) { qemu_configure_mmu_secure(BL32_RO_BASE, BL32_END - BL32_RO_BASE, BL32_RO_BASE, BL32_RO_LIMIT, BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_END); } void sp_min_platform_setup(void) { /* Initialize the gic cpu and distributor interfaces */ gicv2_driver_init(&plat_gicv2_driver_data); gicv2_distif_init(); gicv2_pcpu_distif_init(); gicv2_cpuif_enable(); } unsigned int plat_get_syscnt_freq2(void) { return SYS_COUNTER_FREQ_IN_TICKS; } void sp_min_plat_fiq_handler(uint32_t id) { VERBOSE("[sp_min] interrupt #%d\n", id); }