/* * Copyright 2022 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #ifdef I2C_INIT #include #endif #include #include #include #if TRUSTED_BOARD_BOOT #include #endif #include #include #include #include #include #if defined(NXP_SFP_ENABLED) #include #endif #include #ifdef CONFIG_OCRAM_ECC_EN #include #endif #include #include #include static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2]; static struct soc_type soc_list[] = { SOC_ENTRY(LS1044A, LS1044A, 1, 4), SOC_ENTRY(LS1044AE, LS1044AE, 1, 4), SOC_ENTRY(LS1048A, LS1048A, 1, 4), SOC_ENTRY(LS1048AE, LS1048AE, 1, 4), SOC_ENTRY(LS1084A, LS1084A, 2, 4), SOC_ENTRY(LS1084AE, LS1084AE, 2, 4), SOC_ENTRY(LS1088A, LS1088A, 2, 4), SOC_ENTRY(LS1088AE, LS1088AE, 2, 4), }; static dcfg_init_info_t dcfg_init_data = { .g_nxp_dcfg_addr = NXP_DCFG_ADDR, .nxp_sysclk_freq = NXP_SYSCLK_FREQ, .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, }; /* * This function dynamically constructs the topology according to * SoC Flavor and returns it. */ const unsigned char *plat_get_power_domain_tree_desc(void) { unsigned int i; uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); /* * The highest level is the system level. The next level is constituted * by clusters and then cores in clusters. */ _power_domain_tree_desc[0] = 1; _power_domain_tree_desc[1] = num_clusters; for (i = 0; i < _power_domain_tree_desc[1]; i++) { _power_domain_tree_desc[i + 2] = cores_per_cluster; } return _power_domain_tree_desc; } CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, assert_invalid_ls1088a_cluster_count); /* * This function returns the core count within the cluster corresponding to * `mpidr`. */ unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) { return CORES_PER_CLUSTER; } /* * This function returns the total number of cores in the SoC */ unsigned int get_tot_num_cores(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return (num_clusters * cores_per_cluster); } /* * This function returns the PMU IDLE Cluster mask. */ unsigned int get_pmu_idle_cluster_mask(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return ((1 << num_clusters) - 2); } /* * This function returns the PMU Flush Cluster mask. */ unsigned int get_pmu_flush_cluster_mask(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); return ((1 << num_clusters) - 2); } /* * This function returns the PMU IDLE Core mask. */ unsigned int get_pmu_idle_core_mask(void) { return ((1 << get_tot_num_cores()) - 2); } #ifdef IMAGE_BL2 void soc_bl2_prepare_exit(void) { #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) set_sfp_wr_disable(); #endif } void soc_preload_setup(void) { } /* * This function returns the boot device based on RCW_SRC */ enum boot_device get_boot_dev(void) { enum boot_device src = BOOT_DEVICE_NONE; uint32_t porsr1; uint32_t rcw_src, val; porsr1 = read_reg_porsr1(); rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; /* RCW SRC NOR */ val = rcw_src & RCW_SRC_TYPE_MASK; if (val == NOR_16B_VAL) { src = BOOT_DEVICE_IFC_NOR; INFO("RCW BOOT SRC is IFC NOR\n"); } else { val = rcw_src & RCW_SRC_SERIAL_MASK; switch (val) { case QSPI_VAL: src = BOOT_DEVICE_QSPI; INFO("RCW BOOT SRC is QSPI\n"); break; case SDHC_VAL: src = BOOT_DEVICE_EMMC; INFO("RCW BOOT SRC is SD/EMMC\n"); break; case EMMC_VAL: src = BOOT_DEVICE_EMMC; INFO("RCW BOOT SRC is SD/EMMC\n"); break; default: src = BOOT_DEVICE_NONE; } } return src; } /* * This function sets up access permissions on memory regions */ void soc_mem_access(void) { dram_regions_info_t *info_dram_regions = get_dram_regions_info(); int i = 0; struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; int dram_idx, index = 1; for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions; dram_idx++) { if (info_dram_regions->region[i].size == 0) { ERROR("DDR init failure, or"); ERROR("DRAM regions not populated correctly.\n"); break; } index = populate_tzc400_reg_list(tzc400_reg_list, dram_idx, index, info_dram_regions->region[dram_idx].addr, info_dram_regions->region[dram_idx].size, NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); } mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list); } /* * This function implements soc specific erratum * This is called before DDR is initialized or MMU is enabled */ void soc_early_init(void) { enum boot_device dev; dram_regions_info_t *dram_regions_info = get_dram_regions_info(); #ifdef CONFIG_OCRAM_ECC_EN ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE); #endif dcfg_init(&dcfg_init_data); #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif enable_timer_base_to_cluster(NXP_PMU_ADDR); enable_core_tb(NXP_PMU_ADDR); /* * Use the region(NXP_SD_BLOCK_BUF_ADDR + NXP_SD_BLOCK_BUF_SIZE) * as dma of sd */ dev = get_boot_dev(); if (dev == BOOT_DEVICE_EMMC) { mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS); } #if TRUSTED_BOARD_BOOT uint32_t mode; sfp_init(NXP_SFP_ADDR); /* * For secure boot disable SMMU. * Later when platform security policy comes in picture, * this might get modified based on the policy */ if (check_boot_mode_secure(&mode) == true) { bypass_smmu(NXP_SMMU_ADDR); } /* * For Mbedtls currently crypto is not supported via CAAM * enable it when that support is there. In tbbr.mk * the CAAM_INTEG is set as 0. */ #ifndef MBEDTLS_X509 /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled() == false) { INFO("SEC is disabled.\n"); } else { sec_init(NXP_CAAM_ADDR); } #endif #endif soc_errata(); delay_timer_init(NXP_TIMER_ADDR); i2c_init(NXP_I2C_ADDR); dram_regions_info->total_dram_size = init_ddr(); } #else /* !IMAGE_BL2 */ void soc_early_platform_setup2(void) { dcfg_init(&dcfg_init_data); /* * Initialize system level generic timer for Socs */ delay_timer_init(NXP_TIMER_ADDR); #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif } void soc_platform_setup(void) { /* Initialize the GIC driver, cpu and distributor interfaces */ static uintptr_t target_mask_array[PLATFORM_CORE_COUNT]; static interrupt_prop_t ls_interrupt_props[] = { PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S), PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0) }; plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR, PLATFORM_CORE_COUNT, ls_interrupt_props, ARRAY_SIZE(ls_interrupt_props), target_mask_array, plat_core_pos); plat_ls_gic_init(); enable_init_timer(); } /* * This function initializes the soc from the BL31 module */ void soc_init(void) { uint8_t num_clusters, cores_per_cluster; /* low-level init of the soc */ soc_init_lowlevel(); _init_global_data(); soc_init_percpu(); _initialize_psci(); /* * Initialize Interconnect for this cluster during cold boot. * No need for locks as no other CPU is active. */ cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); /* * Enable Interconnect coherency for the primary CPU's cluster. */ get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); plat_ls_interconnect_enter_coherency(num_clusters); /* set platform security policies */ _set_platform_security(); /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled() == false) { INFO("SEC is disabled.\n"); } else { sec_init(NXP_CAAM_ADDR); } } void soc_runtime_setup(void) { } #endif /* IMAGE_BL2 */ /* * Function to return the SoC SYS CLK */ unsigned int get_sys_clk(void) { return NXP_SYSCLK_FREQ; } /* * Function returns the base counter frequency * after reading the first entry at CNTFID0 (0x20 offset). * * Function is used by: * 1. ARM common code for PSCI management. * 2. ARM Generic Timer init. */ unsigned int plat_get_syscnt_freq2(void) { unsigned int counter_base_frequency; /* * Below register specifies the base frequency of the system counter. * As per NXP Board Manuals: * The system counter always works with SYS_REF_CLK/4 frequency clock. */ counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF); return counter_base_frequency; }