/* * Copyright 2018-2022 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #ifdef I2C_INIT #include #endif #include #include #include #ifdef POLICY_FUSE_PROVISION #include #endif #if TRUSTED_BOARD_BOOT #include #endif #include #include #include #include #include #if defined(NXP_SFP_ENABLED) #include #endif #include #include #ifdef CONFIG_OCRAM_ECC_EN #include #endif #include #include #include static dcfg_init_info_t dcfg_init_data = { .g_nxp_dcfg_addr = NXP_DCFG_ADDR, .nxp_sysclk_freq = NXP_SYSCLK_FREQ, .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, }; /* Function to return the SoC SYS CLK */ static unsigned int get_sys_clk(void) { return NXP_SYSCLK_FREQ; } /* * Function returns the base counter frequency * after reading the first entry at CNTFID0 (0x20 offset). * * Function is used by: * 1. ARM common code for PSCI management. * 2. ARM Generic Timer init. * */ unsigned int plat_get_syscnt_freq2(void) { unsigned int counter_base_frequency; counter_base_frequency = get_sys_clk() / 4; return counter_base_frequency; } #ifdef IMAGE_BL2 /* Functions for BL2 */ static struct soc_type soc_list[] = { SOC_ENTRY(LS1046A, LS1046A, 1, 4), SOC_ENTRY(LS1046AE, LS1046AE, 1, 4), SOC_ENTRY(LS1026A, LS1026A, 1, 2), SOC_ENTRY(LS1026AE, LS1026AE, 1, 2), }; #ifdef POLICY_FUSE_PROVISION static gpio_init_info_t gpio_init_data = { .gpio1_base_addr = NXP_GPIO1_ADDR, .gpio2_base_addr = NXP_GPIO2_ADDR, .gpio3_base_addr = NXP_GPIO3_ADDR, .gpio4_base_addr = NXP_GPIO4_ADDR, }; #endif /* * Function to set the base counter frequency at * the first entry of the Frequency Mode Table, * at CNTFID0 (0x20 offset). * * Set the value of the pirmary core register cntfrq_el0. */ static void set_base_freq_CNTFID0(void) { /* * Below register specifies the base frequency of the system counter. * As per NXP Board Manuals: * The system counter always works with SYS_REF_CLK/4 frequency clock. */ unsigned int counter_base_frequency = get_sys_clk() / 4; /* Setting the frequency in the Frequency modes table. * * Note: The value for ls1046ardb board at this offset * is not RW as stated. This offset have the * fixed value of 100000400 Hz. * * The below code line has no effect. * Keeping it for other platforms where it has effect. */ mmio_write_32(NXP_TIMER_ADDR + CNTFID_OFF, counter_base_frequency); write_cntfrq_el0(counter_base_frequency); } void soc_preload_setup(void) { } /* * This function implements soc specific erratas * This is called before DDR is initialized or MMU is enabled */ void soc_early_init(void) { uint8_t num_clusters, cores_per_cluster; dram_regions_info_t *dram_regions_info = get_dram_regions_info(); #ifdef CONFIG_OCRAM_ECC_EN ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE); #endif dcfg_init(&dcfg_init_data); #ifdef POLICY_FUSE_PROVISION gpio_init(&gpio_init_data); sec_init(NXP_CAAM_ADDR); #endif #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif set_base_freq_CNTFID0(); /* Enable snooping on SEC read and write transactions */ scfg_setbits32((void *)(NXP_SCFG_ADDR + SCFG_SNPCNFGCR_OFFSET), SCFG_SNPCNFGCR_SECRDSNP | SCFG_SNPCNFGCR_SECWRSNP); /* * Initialize Interconnect for this cluster during cold boot. * No need for locks as no other CPU is active. */ cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); /* * Enable Interconnect coherency for the primary CPU's cluster. */ get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); plat_ls_interconnect_enter_coherency(num_clusters); #if TRUSTED_BOARD_BOOT uint32_t mode; sfp_init(NXP_SFP_ADDR); /* * For secure boot disable SMMU. * Later when platform security policy comes in picture, * this might get modified based on the policy */ if (check_boot_mode_secure(&mode) == true) { bypass_smmu(NXP_SMMU_ADDR); } /* * For Mbedtls currently crypto is not supported via CAAM * enable it when that support is there. In tbbr.mk * the CAAM_INTEG is set as 0. */ #ifndef MBEDTLS_X509 /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled() == false) { INFO("SEC is disabled.\n"); } else { sec_init(NXP_CAAM_ADDR); } #endif #elif defined(POLICY_FUSE_PROVISION) gpio_init(&gpio_init_data); sfp_init(NXP_SFP_ADDR); sec_init(NXP_CAAM_ADDR); #endif soc_errata(); /* Initialize system level generic timer for Layerscape Socs. */ delay_timer_init(NXP_TIMER_ADDR); #ifdef DDR_INIT i2c_init(NXP_I2C_ADDR); dram_regions_info->total_dram_size = init_ddr(); #endif } void soc_bl2_prepare_exit(void) { #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) set_sfp_wr_disable(); #endif } /* This function returns the boot device based on RCW_SRC */ enum boot_device get_boot_dev(void) { enum boot_device src = BOOT_DEVICE_NONE; uint32_t porsr1; uint32_t rcw_src, val; porsr1 = read_reg_porsr1(); rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; val = rcw_src & RCW_SRC_NAND_MASK; if (val == RCW_SRC_NAND_VAL) { val = rcw_src & NAND_RESERVED_MASK; if ((val != NAND_RESERVED_1) && (val != NAND_RESERVED_2)) { src = BOOT_DEVICE_IFC_NAND; INFO("RCW BOOT SRC is IFC NAND\n"); } } else { /* RCW SRC NOR */ val = rcw_src & RCW_SRC_NOR_MASK; if (val == NOR_8B_VAL || val == NOR_16B_VAL) { src = BOOT_DEVICE_IFC_NOR; INFO("RCW BOOT SRC is IFC NOR\n"); } else { switch (rcw_src) { case QSPI_VAL1: case QSPI_VAL2: src = BOOT_DEVICE_QSPI; INFO("RCW BOOT SRC is QSPI\n"); break; case SD_VAL: src = BOOT_DEVICE_EMMC; INFO("RCW BOOT SRC is SD/EMMC\n"); break; default: src = BOOT_DEVICE_NONE; } } } return src; } /* This function sets up access permissions on memory regions */ void soc_mem_access(void) { dram_regions_info_t *info_dram_regions = get_dram_regions_info(); struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; unsigned int dram_idx, index = 0U; for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions; dram_idx++) { if (info_dram_regions->region[dram_idx].size == 0) { ERROR("DDR init failure, or"); ERROR("DRAM regions not populated correctly.\n"); break; } index = populate_tzc400_reg_list(tzc400_reg_list, dram_idx, index, info_dram_regions->region[dram_idx].addr, info_dram_regions->region[dram_idx].size, NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); } mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list); } #else /* IMAGE_BL2 */ /* Functions for BL31 */ const unsigned char _power_domain_tree_desc[] = {1, 1, 4}; CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, assert_invalid_ls1046_cluster_count); /* This function returns the SoC topology */ const unsigned char *plat_get_power_domain_tree_desc(void) { return _power_domain_tree_desc; } /* * This function returns the core count within the cluster corresponding to * `mpidr`. */ unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) { return CORES_PER_CLUSTER; } void soc_early_platform_setup2(void) { dcfg_init(&dcfg_init_data); /* Initialize system level generic timer for SoCs */ delay_timer_init(NXP_TIMER_ADDR); #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif } void soc_platform_setup(void) { static uint32_t target_mask_array[PLATFORM_CORE_COUNT]; /* * On a GICv2 system, the Group 1 secure interrupts are treated * as Group 0 interrupts. */ static interrupt_prop_t ls_interrupt_props[] = { PLAT_LS_G1S_IRQ_PROPS(GICV2_INTR_GROUP0), PLAT_LS_G0_IRQ_PROPS(GICV2_INTR_GROUP0) }; plat_ls_gic_driver_init( #if (TEST_BL31) /* Defect in simulator - GIC base addresses (4Kb aligned) */ NXP_GICD_4K_ADDR, NXP_GICC_4K_ADDR, #else NXP_GICD_64K_ADDR, NXP_GICC_64K_ADDR, #endif PLATFORM_CORE_COUNT, ls_interrupt_props, ARRAY_SIZE(ls_interrupt_props), target_mask_array); plat_ls_gic_init(); enable_init_timer(); } /* This function initializes the soc from the BL31 module */ void soc_init(void) { /* low-level init of the soc */ soc_init_lowlevel(); _init_global_data(); soc_init_percpu(); _initialize_psci(); /* * Initialize the interconnect during cold boot. * No need for locks as no other CPU is active. */ cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); /* * Enable coherency in interconnect for the primary CPU's cluster. * Earlier bootloader stages might already do this but we can't * assume so. No harm in executing this code twice. */ cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr())); /* Init CSU to enable non-secure access to peripherals */ enable_layerscape_ns_access(ns_dev, ARRAY_SIZE(ns_dev), NXP_CSU_ADDR); /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled() == false) { INFO("SEC is disabled.\n"); } else { sec_init(NXP_CAAM_ADDR); } } void soc_runtime_setup(void) { } #endif /* IMAGE_BL2 */