/* * Copyright 2018-2021 NXP * * SPDX-License-Identifier: BSD-3-Clause * */ #include #include #include #include #include #include #include #include #ifdef I2C_INIT #include #endif #include #include #include #ifdef POLICY_FUSE_PROVISION #include #endif #if TRUSTED_BOARD_BOOT #include #endif #include #include #include #include #include #if defined(NXP_SFP_ENABLED) #include #endif #include #include #include "plat_common.h" #ifdef NXP_NV_SW_MAINT_LAST_EXEC_DATA #include #endif #ifdef NXP_WARM_BOOT #include #endif #include "platform_def.h" #include "soc.h" static struct soc_type soc_list[] = { SOC_ENTRY(LX2160A, LX2160A, 8, 2), SOC_ENTRY(LX2080A, LX2080A, 8, 1), SOC_ENTRY(LX2120A, LX2120A, 6, 2), }; static dcfg_init_info_t dcfg_init_data = { .g_nxp_dcfg_addr = NXP_DCFG_ADDR, .nxp_sysclk_freq = NXP_SYSCLK_FREQ, .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, }; static const unsigned char master_to_6rn_id_map[] = { PLAT_6CLUSTER_TO_CCN_ID_MAP }; static const unsigned char master_to_rn_id_map[] = { PLAT_CLUSTER_TO_CCN_ID_MAP }; CASSERT(ARRAY_SIZE(master_to_rn_id_map) == NUMBER_OF_CLUSTERS, assert_invalid_cluster_count_for_ccn_variant); static const ccn_desc_t plat_six_cluster_ccn_desc = { .periphbase = NXP_CCN_ADDR, .num_masters = ARRAY_SIZE(master_to_6rn_id_map), .master_to_rn_id_map = master_to_6rn_id_map }; static const ccn_desc_t plat_ccn_desc = { .periphbase = NXP_CCN_ADDR, .num_masters = ARRAY_SIZE(master_to_rn_id_map), .master_to_rn_id_map = master_to_rn_id_map }; /****************************************************************************** * Function returns the base counter frequency * after reading the first entry at CNTFID0 (0x20 offset). * * Function is used by: * 1. ARM common code for PSCI management. * 2. ARM Generic Timer init. * *****************************************************************************/ unsigned int plat_get_syscnt_freq2(void) { unsigned int counter_base_frequency; /* * Below register specifies the base frequency of the system counter. * As per NXP Board Manuals: * The system counter always works with SYS_REF_CLK/4 frequency clock. * * */ counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF); return counter_base_frequency; } #ifdef IMAGE_BL2 #ifdef POLICY_FUSE_PROVISION static gpio_init_info_t gpio_init_data = { .gpio1_base_addr = NXP_GPIO1_ADDR, .gpio2_base_addr = NXP_GPIO2_ADDR, .gpio3_base_addr = NXP_GPIO3_ADDR, .gpio4_base_addr = NXP_GPIO4_ADDR, }; #endif static void soc_interconnect_config(void) { unsigned long long val = 0x0U; uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); if (num_clusters == 6U) { ccn_init(&plat_six_cluster_ccn_desc); } else { ccn_init(&plat_ccn_desc); } /* * Enable Interconnect coherency for the primary CPU's cluster. */ plat_ls_interconnect_enter_coherency(num_clusters); val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET); val |= (1 << 17); ccn_write_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET, val); /* PCIe is Connected to RN-I 17 which is connected to HN-I 13. */ val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET); val |= (1 << 17); ccn_write_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET, val); val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET); val |= SERIALIZE_DEV_nGnRnE_WRITES; ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val); val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET); val &= ~(ENABLE_RESERVE_BIT53); val |= SERIALIZE_DEV_nGnRnE_WRITES; ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val); val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET); val &= ~(HNI_POS_EN); ccn_write_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET, val); val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET); val &= ~(HNI_POS_EN); ccn_write_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET, val); val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET); val &= ~(POS_EARLY_WR_COMP_EN); ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val); val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET); val &= ~(POS_EARLY_WR_COMP_EN); ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val); #if POLICY_PERF_WRIOP uint16_t wriop_rni = 0U; if (POLICY_PERF_WRIOP == 1) { wriop_rni = 7U; } else if (POLICY_PERF_WRIOP == 2) { wriop_rni = 23U; } else { ERROR("Incorrect WRIOP selected.\n"); panic(); } val = ccn_read_node_reg(NODE_TYPE_RNI, wriop_rni, SA_AUX_CTRL_REG_OFFSET); val |= ENABLE_WUO; ccn_write_node_reg(NODE_TYPE_HNI, wriop_rni, SA_AUX_CTRL_REG_OFFSET, val); #else val = ccn_read_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET); val |= ENABLE_WUO; ccn_write_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET, val); #endif } void soc_preload_setup(void) { dram_regions_info_t *info_dram_regions = get_dram_regions_info(); #if defined(NXP_WARM_BOOT) bool warm_reset = is_warm_boot(); #endif info_dram_regions->total_dram_size = #if defined(NXP_WARM_BOOT) init_ddr(warm_reset); #else init_ddr(); #endif } /******************************************************************************* * This function implements soc specific erratas * This is called before DDR is initialized or MMU is enabled ******************************************************************************/ void soc_early_init(void) { dcfg_init(&dcfg_init_data); #ifdef POLICY_FUSE_PROVISION gpio_init(&gpio_init_data); sec_init(NXP_CAAM_ADDR); #endif #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif enable_timer_base_to_cluster(NXP_PMU_ADDR); soc_interconnect_config(); enum boot_device dev = get_boot_dev(); /* Mark the buffer for SD in OCRAM as non secure. * The buffer is assumed to be at end of OCRAM for * the logic below to calculate TZPC programming */ if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) { /* Calculate the region in OCRAM which is secure * The buffer for SD needs to be marked non-secure * to allow SD to do DMA operations on it */ uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE); uint32_t mask = secure_region/TZPC_BLOCK_SIZE; mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask); /* Add the entry for buffer in MMU Table */ mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS); } soc_errata(); #if (TRUSTED_BOARD_BOOT) || defined(POLICY_FUSE_PROVISION) sfp_init(NXP_SFP_ADDR); #endif #if TRUSTED_BOARD_BOOT uint32_t mode; /* For secure boot disable SMMU. * Later when platform security policy comes in picture, * this might get modified based on the policy */ if (check_boot_mode_secure(&mode) == true) { bypass_smmu(NXP_SMMU_ADDR); } /* For Mbedtls currently crypto is not supported via CAAM * enable it when that support is there. In tbbr.mk * the CAAM_INTEG is set as 0. */ #ifndef MBEDTLS_X509 /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled() == false) INFO("SEC is disabled.\n"); else sec_init(NXP_CAAM_ADDR); #endif #endif /* * Initialize system level generic timer for Layerscape Socs. */ delay_timer_init(NXP_TIMER_ADDR); i2c_init(NXP_I2C_ADDR); } void soc_bl2_prepare_exit(void) { #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) set_sfp_wr_disable(); #endif } /***************************************************************************** * This function returns the boot device based on RCW_SRC ****************************************************************************/ enum boot_device get_boot_dev(void) { enum boot_device src = BOOT_DEVICE_NONE; uint32_t porsr1; uint32_t rcw_src; porsr1 = read_reg_porsr1(); rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; switch (rcw_src) { case FLEXSPI_NOR: src = BOOT_DEVICE_FLEXSPI_NOR; INFO("RCW BOOT SRC is FLEXSPI NOR\n"); break; case FLEXSPI_NAND2K_VAL: case FLEXSPI_NAND4K_VAL: INFO("RCW BOOT SRC is FLEXSPI NAND\n"); src = BOOT_DEVICE_FLEXSPI_NAND; break; case SDHC1_VAL: src = BOOT_DEVICE_EMMC; INFO("RCW BOOT SRC is SD\n"); break; case SDHC2_VAL: src = BOOT_DEVICE_SDHC2_EMMC; INFO("RCW BOOT SRC is EMMC\n"); break; default: break; } return src; } void soc_mem_access(void) { const devdisr5_info_t *devdisr5_info = get_devdisr5_info(); dram_regions_info_t *info_dram_regions = get_dram_regions_info(); struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; int dram_idx, index = 0U; for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions; dram_idx++) { if (info_dram_regions->region[dram_idx].size == 0) { ERROR("DDR init failure, or"); ERROR("DRAM regions not populated correctly.\n"); break; } index = populate_tzc400_reg_list(tzc400_reg_list, dram_idx, index, info_dram_regions->region[dram_idx].addr, info_dram_regions->region[dram_idx].size, NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); } if (devdisr5_info->ddrc1_present != 0) { INFO("DDR Controller 1.\n"); mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list); mem_access_setup(NXP_TZC3_ADDR, index, tzc400_reg_list); } if (devdisr5_info->ddrc2_present != 0) { INFO("DDR Controller 2.\n"); mem_access_setup(NXP_TZC2_ADDR, index, tzc400_reg_list); mem_access_setup(NXP_TZC4_ADDR, index, tzc400_reg_list); } } #else const unsigned char _power_domain_tree_desc[] = {1, 8, 2, 2, 2, 2, 2, 2, 2, 2}; CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, assert_invalid_lx2160a_cluster_count); /****************************************************************************** * This function returns the SoC topology ****************************************************************************/ const unsigned char *plat_get_power_domain_tree_desc(void) { return _power_domain_tree_desc; } /******************************************************************************* * This function returns the core count within the cluster corresponding to * `mpidr`. ******************************************************************************/ unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) { return CORES_PER_CLUSTER; } void soc_early_platform_setup2(void) { dcfg_init(&dcfg_init_data); /* * Initialize system level generic timer for Socs */ delay_timer_init(NXP_TIMER_ADDR); #if LOG_LEVEL > 0 /* Initialize the console to provide early debug support */ plat_console_init(NXP_CONSOLE_ADDR, NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); #endif } void soc_platform_setup(void) { /* Initialize the GIC driver, cpu and distributor interfaces */ static uintptr_t target_mask_array[PLATFORM_CORE_COUNT]; static interrupt_prop_t ls_interrupt_props[] = { PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S), PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0) }; plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR, PLATFORM_CORE_COUNT, ls_interrupt_props, ARRAY_SIZE(ls_interrupt_props), target_mask_array, plat_core_pos); plat_ls_gic_init(); enable_init_timer(); #ifdef LS_SYS_TIMCTL_BASE ls_configure_sys_timer(LS_SYS_TIMCTL_BASE, LS_CONFIG_CNTACR, PLAT_LS_NSTIMER_FRAME_ID); #endif } /******************************************************************************* * This function initializes the soc from the BL31 module ******************************************************************************/ void soc_init(void) { uint8_t num_clusters, cores_per_cluster; get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); /* low-level init of the soc */ soc_init_start(); soc_init_percpu(); _init_global_data(); _initialize_psci(); if (ccn_get_part0_id(NXP_CCN_ADDR) != CCN_508_PART0_ID) { ERROR("Unrecognized CCN variant detected."); ERROR("Only CCN-508 is supported\n"); panic(); } if (num_clusters == 6U) { ccn_init(&plat_six_cluster_ccn_desc); } else { ccn_init(&plat_ccn_desc); } plat_ls_interconnect_enter_coherency(num_clusters); /* Set platform security policies */ _set_platform_security(); /* make sure any parallel init tasks are finished */ soc_init_finish(); /* Initialize the crypto accelerator if enabled */ if (is_sec_enabled() == false) { INFO("SEC is disabled.\n"); } else { sec_init(NXP_CAAM_ADDR); } } #ifdef NXP_WDOG_RESTART static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { uint8_t data = WDOG_RESET_FLAG; wr_nv_app_data(WDT_RESET_FLAG_OFFSET, (uint8_t *)&data, sizeof(data)); mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT); return 0; } #endif void soc_runtime_setup(void) { #ifdef NXP_WDOG_RESTART request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler); #endif } #endif