/* * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include "ivc.h" /* * IVC channel reset protocol. * * Each end uses its tx_channel.state to indicate its synchronization state. */ enum { /* * This value is zero for backwards compatibility with services that * assume channels to be initially zeroed. Such channels are in an * initially valid state, but cannot be asynchronously reset, and must * maintain a valid state at all times. * * The transmitting end can enter the established state from the sync or * ack state when it observes the receiving endpoint in the ack or * established state, indicating that has cleared the counters in our * rx_channel. */ ivc_state_established = U(0), /* * If an endpoint is observed in the sync state, the remote endpoint is * allowed to clear the counters it owns asynchronously with respect to * the current endpoint. Therefore, the current endpoint is no longer * allowed to communicate. */ ivc_state_sync = U(1), /* * When the transmitting end observes the receiving end in the sync * state, it can clear the w_count and r_count and transition to the ack * state. If the remote endpoint observes us in the ack state, it can * return to the established state once it has cleared its counters. */ ivc_state_ack = U(2) }; /* * This structure is divided into two-cache aligned parts, the first is only * written through the tx_channel pointer, while the second is only written * through the rx_channel pointer. This delineates ownership of the cache lines, * which is critical to performance and necessary in non-cache coherent * implementations. */ struct ivc_channel_header { struct { /* fields owned by the transmitting end */ uint32_t w_count; uint32_t state; uint32_t w_rsvd[IVC_CHHDR_TX_FIELDS - 2]; }; struct { /* fields owned by the receiving end */ uint32_t r_count; uint32_t r_rsvd[IVC_CHHDR_RX_FIELDS - 1]; }; }; static inline bool ivc_channel_empty(const struct ivc *ivc, volatile const struct ivc_channel_header *ch) { /* * This function performs multiple checks on the same values with * security implications, so sample the counters' current values in * shared memory to ensure that these checks use the same values. */ uint32_t wr_count = ch->w_count; uint32_t rd_count = ch->r_count; bool ret = false; (void)ivc; /* * Perform an over-full check to prevent denial of service attacks where * a server could be easily fooled into believing that there's an * extremely large number of frames ready, since receivers are not * expected to check for full or over-full conditions. * * Although the channel isn't empty, this is an invalid case caused by * a potentially malicious peer, so returning empty is safer, because it * gives the impression that the channel has gone silent. */ if (((wr_count - rd_count) > ivc->nframes) || (wr_count == rd_count)) { ret = true; } return ret; } static inline bool ivc_channel_full(const struct ivc *ivc, volatile const struct ivc_channel_header *ch) { uint32_t wr_count = ch->w_count; uint32_t rd_count = ch->r_count; (void)ivc; /* * Invalid cases where the counters indicate that the queue is over * capacity also appear full. */ return ((wr_count - rd_count) >= ivc->nframes); } static inline uint32_t ivc_channel_avail_count(const struct ivc *ivc, volatile const struct ivc_channel_header *ch) { uint32_t wr_count = ch->w_count; uint32_t rd_count = ch->r_count; (void)ivc; /* * This function isn't expected to be used in scenarios where an * over-full situation can lead to denial of service attacks. See the * comment in ivc_channel_empty() for an explanation about special * over-full considerations. */ return (wr_count - rd_count); } static inline void ivc_advance_tx(struct ivc *ivc) { ivc->tx_channel->w_count++; if (ivc->w_pos == (ivc->nframes - (uint32_t)1U)) { ivc->w_pos = 0U; } else { ivc->w_pos++; } } static inline void ivc_advance_rx(struct ivc *ivc) { ivc->rx_channel->r_count++; if (ivc->r_pos == (ivc->nframes - (uint32_t)1U)) { ivc->r_pos = 0U; } else { ivc->r_pos++; } } static inline int32_t ivc_check_read(const struct ivc *ivc) { /* * tx_channel->state is set locally, so it is not synchronized with * state from the remote peer. The remote peer cannot reset its * transmit counters until we've acknowledged its synchronization * request, so no additional synchronization is required because an * asynchronous transition of rx_channel->state to ivc_state_ack is not * allowed. */ if (ivc->tx_channel->state != ivc_state_established) { return -ECONNRESET; } /* * Avoid unnecessary invalidations when performing repeated accesses to * an IVC channel by checking the old queue pointers first. * Synchronization is only necessary when these pointers indicate empty * or full. */ if (!ivc_channel_empty(ivc, ivc->rx_channel)) { return 0; } return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0; } static inline int32_t ivc_check_write(const struct ivc *ivc) { if (ivc->tx_channel->state != ivc_state_established) { return -ECONNRESET; } if (!ivc_channel_full(ivc, ivc->tx_channel)) { return 0; } return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0; } bool tegra_ivc_can_read(const struct ivc *ivc) { return ivc_check_read(ivc) == 0; } bool tegra_ivc_can_write(const struct ivc *ivc) { return ivc_check_write(ivc) == 0; } bool tegra_ivc_tx_empty(const struct ivc *ivc) { return ivc_channel_empty(ivc, ivc->tx_channel); } static inline uintptr_t calc_frame_offset(uint32_t frame_index, uint32_t frame_size, uint32_t frame_offset) { return ((uintptr_t)frame_index * (uintptr_t)frame_size) + (uintptr_t)frame_offset; } static void *ivc_frame_pointer(const struct ivc *ivc, volatile const struct ivc_channel_header *ch, uint32_t frame) { assert(frame < ivc->nframes); return (void *)((uintptr_t)(&ch[1]) + calc_frame_offset(frame, ivc->frame_size, 0)); } int32_t tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read) { const void *src; int32_t result; if (buf == NULL) { return -EINVAL; } if (max_read > ivc->frame_size) { return -E2BIG; } result = ivc_check_read(ivc); if (result != 0) { return result; } /* * Order observation of w_pos potentially indicating new data before * data read. */ dmbish(); src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); (void)memcpy(buf, src, max_read); ivc_advance_rx(ivc); /* * Ensure our write to r_pos occurs before our read from w_pos. */ dmbish(); /* * Notify only upon transition from full to non-full. * The available count can only asynchronously increase, so the * worst possible side-effect will be a spurious notification. */ if (ivc_channel_avail_count(ivc, ivc->rx_channel) == (ivc->nframes - (uint32_t)1U)) { ivc->notify(ivc); } return (int32_t)max_read; } /* directly peek at the next frame rx'ed */ void *tegra_ivc_read_get_next_frame(const struct ivc *ivc) { if (ivc_check_read(ivc) != 0) { return NULL; } /* * Order observation of w_pos potentially indicating new data before * data read. */ dmbld(); return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); } int32_t tegra_ivc_read_advance(struct ivc *ivc) { /* * No read barriers or synchronization here: the caller is expected to * have already observed the channel non-empty. This check is just to * catch programming errors. */ int32_t result = ivc_check_read(ivc); if (result != 0) { return result; } ivc_advance_rx(ivc); /* * Ensure our write to r_pos occurs before our read from w_pos. */ dmbish(); /* * Notify only upon transition from full to non-full. * The available count can only asynchronously increase, so the * worst possible side-effect will be a spurious notification. */ if (ivc_channel_avail_count(ivc, ivc->rx_channel) == (ivc->nframes - (uint32_t)1U)) { ivc->notify(ivc); } return 0; } int32_t tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size) { void *p; int32_t result; if ((buf == NULL) || (ivc == NULL)) { return -EINVAL; } if (size > ivc->frame_size) { return -E2BIG; } result = ivc_check_write(ivc); if (result != 0) { return result; } p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); (void)memset(p, 0, ivc->frame_size); (void)memcpy(p, buf, size); /* * Ensure that updated data is visible before the w_pos counter * indicates that it is ready. */ dmbst(); ivc_advance_tx(ivc); /* * Ensure our write to w_pos occurs before our read from r_pos. */ dmbish(); /* * Notify only upon transition from empty to non-empty. * The available count can only asynchronously decrease, so the * worst possible side-effect will be a spurious notification. */ if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1U) { ivc->notify(ivc); } return (int32_t)size; } /* directly poke at the next frame to be tx'ed */ void *tegra_ivc_write_get_next_frame(const struct ivc *ivc) { if (ivc_check_write(ivc) != 0) { return NULL; } return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); } /* advance the tx buffer */ int32_t tegra_ivc_write_advance(struct ivc *ivc) { int32_t result = ivc_check_write(ivc); if (result != 0) { return result; } /* * Order any possible stores to the frame before update of w_pos. */ dmbst(); ivc_advance_tx(ivc); /* * Ensure our write to w_pos occurs before our read from r_pos. */ dmbish(); /* * Notify only upon transition from empty to non-empty. * The available count can only asynchronously decrease, so the * worst possible side-effect will be a spurious notification. */ if (ivc_channel_avail_count(ivc, ivc->tx_channel) == (uint32_t)1U) { ivc->notify(ivc); } return 0; } void tegra_ivc_channel_reset(const struct ivc *ivc) { ivc->tx_channel->state = ivc_state_sync; ivc->notify(ivc); } /* * =============================================================== * IVC State Transition Table - see tegra_ivc_channel_notified() * =============================================================== * * local remote action * ----- ------ ----------------------------------- * SYNC EST * SYNC ACK reset counters; move to EST; notify * SYNC SYNC reset counters; move to ACK; notify * ACK EST move to EST; notify * ACK ACK move to EST; notify * ACK SYNC reset counters; move to ACK; notify * EST EST * EST ACK * EST SYNC reset counters; move to ACK; notify * * =============================================================== */ int32_t tegra_ivc_channel_notified(struct ivc *ivc) { uint32_t peer_state; /* Copy the receiver's state out of shared memory. */ peer_state = ivc->rx_channel->state; if (peer_state == (uint32_t)ivc_state_sync) { /* * Order observation of ivc_state_sync before stores clearing * tx_channel. */ dmbld(); /* * Reset tx_channel counters. The remote end is in the SYNC * state and won't make progress until we change our state, * so the counters are not in use at this time. */ ivc->tx_channel->w_count = 0U; ivc->rx_channel->r_count = 0U; ivc->w_pos = 0U; ivc->r_pos = 0U; /* * Ensure that counters appear cleared before new state can be * observed. */ dmbst(); /* * Move to ACK state. We have just cleared our counters, so it * is now safe for the remote end to start using these values. */ ivc->tx_channel->state = ivc_state_ack; /* * Notify remote end to observe state transition. */ ivc->notify(ivc); } else if ((ivc->tx_channel->state == (uint32_t)ivc_state_sync) && (peer_state == (uint32_t)ivc_state_ack)) { /* * Order observation of ivc_state_sync before stores clearing * tx_channel. */ dmbld(); /* * Reset tx_channel counters. The remote end is in the ACK * state and won't make progress until we change our state, * so the counters are not in use at this time. */ ivc->tx_channel->w_count = 0U; ivc->rx_channel->r_count = 0U; ivc->w_pos = 0U; ivc->r_pos = 0U; /* * Ensure that counters appear cleared before new state can be * observed. */ dmbst(); /* * Move to ESTABLISHED state. We know that the remote end has * already cleared its counters, so it is safe to start * writing/reading on this channel. */ ivc->tx_channel->state = ivc_state_established; /* * Notify remote end to observe state transition. */ ivc->notify(ivc); } else if (ivc->tx_channel->state == (uint32_t)ivc_state_ack) { /* * At this point, we have observed the peer to be in either * the ACK or ESTABLISHED state. Next, order observation of * peer state before storing to tx_channel. */ dmbld(); /* * Move to ESTABLISHED state. We know that we have previously * cleared our counters, and we know that the remote end has * cleared its counters, so it is safe to start writing/reading * on this channel. */ ivc->tx_channel->state = ivc_state_established; /* * Notify remote end to observe state transition. */ ivc->notify(ivc); } else { /* * There is no need to handle any further action. Either the * channel is already fully established, or we are waiting for * the remote end to catch up with our current state. Refer * to the diagram in "IVC State Transition Table" above. */ } return ((ivc->tx_channel->state == (uint32_t)ivc_state_established) ? 0 : -EAGAIN); } size_t tegra_ivc_align(size_t size) { return (size + (IVC_ALIGN - 1U)) & ~(IVC_ALIGN - 1U); } size_t tegra_ivc_total_queue_size(size_t queue_size) { if ((queue_size & (IVC_ALIGN - 1U)) != 0U) { ERROR("queue_size (%d) must be %d-byte aligned\n", (int32_t)queue_size, IVC_ALIGN); return 0; } return queue_size + sizeof(struct ivc_channel_header); } static int32_t check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2, uint32_t nframes, uint32_t frame_size) { assert((offsetof(struct ivc_channel_header, w_count) & (IVC_ALIGN - 1U)) == 0U); assert((offsetof(struct ivc_channel_header, r_count) & (IVC_ALIGN - 1U)) == 0U); assert((sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1U)) == 0U); if (((uint64_t)nframes * (uint64_t)frame_size) >= 0x100000000ULL) { ERROR("nframes * frame_size overflows\n"); return -EINVAL; } /* * The headers must at least be aligned enough for counters * to be accessed atomically. */ if ((queue_base1 & (IVC_ALIGN - 1U)) != 0U) { ERROR("ivc channel start not aligned: %lx\n", queue_base1); return -EINVAL; } if ((queue_base2 & (IVC_ALIGN - 1U)) != 0U) { ERROR("ivc channel start not aligned: %lx\n", queue_base2); return -EINVAL; } if ((frame_size & (IVC_ALIGN - 1U)) != 0U) { ERROR("frame size not adequately aligned: %u\n", frame_size); return -EINVAL; } if (queue_base1 < queue_base2) { if ((queue_base1 + ((uint64_t)frame_size * nframes)) > queue_base2) { ERROR("queue regions overlap: %lx + %x, %x\n", queue_base1, frame_size, frame_size * nframes); return -EINVAL; } } else { if ((queue_base2 + ((uint64_t)frame_size * nframes)) > queue_base1) { ERROR("queue regions overlap: %lx + %x, %x\n", queue_base2, frame_size, frame_size * nframes); return -EINVAL; } } return 0; } int32_t tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base, uint32_t nframes, uint32_t frame_size, ivc_notify_function notify) { int32_t result; /* sanity check input params */ if ((ivc == NULL) || (notify == NULL)) { return -EINVAL; } result = check_ivc_params(rx_base, tx_base, nframes, frame_size); if (result != 0) { return result; } /* * All sizes that can be returned by communication functions should * fit in a 32-bit integer. */ if (frame_size > (1u << 31)) { return -E2BIG; } ivc->rx_channel = (struct ivc_channel_header *)rx_base; ivc->tx_channel = (struct ivc_channel_header *)tx_base; ivc->notify = notify; ivc->frame_size = frame_size; ivc->nframes = nframes; ivc->w_pos = 0U; ivc->r_pos = 0U; INFO("%s: done\n", __func__); return 0; }