/* * Copyright 2021-2022 NXP * SPDX-License-Identifier: BSD-3-Clause * */ #include #include #include #include #include #include #include "csr.h" #include #include "ddr4fw.h" #include #ifdef NXP_WARM_BOOT #include #endif #include "input.h" #include #include #include #ifdef DDR_PHY_DEBUG #include "messages.h" #endif #ifdef NXP_WARM_BOOT #include "phy.h" #endif #include "pie.h" #define TIMEOUTDEFAULT 500 #define MAP_PHY_ADDR(pstate, n, instance, offset, c) \ ((((pstate * n) + instance + c) << 12) + offset) static uint32_t map_phy_addr_space(uint32_t addr) { /* 23 bit addressing */ uint32_t pstate = (addr & U(0x700000)) >> 20U; /* bit 22:20 */ uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */ uint32_t instance = (addr & U(0x00f000)) >> 12U; /* bit 15:12 */ uint32_t offset = (addr & U(0x000fff)); /* bit 11:0 */ switch (block_type) { case 0x0: /* 0x0 : ANIB */ return MAP_PHY_ADDR(pstate, 12, instance, offset, 0); case 0x1: /* 0x1 : DBYTE */ return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30); case 0x2: /* 0x2 : MASTER */ return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58); case 0x4: /* 0x4 : ACSM */ return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c); case 0x5: /* 0x5 : μCTL Memory */ return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60); case 0x7: /* 0x7 : PPGC */ return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68); case 0x9: /* 0x9 : INITENG */ return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69); case 0xc: /* 0xC : DRTUB */ return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d); case 0xd: /* 0xD : APB Only */ return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e); default: printf("ERR: Invalid block_type = 0x%x\n", block_type); return 0; } } static inline uint16_t *phy_io_addr(void *phy, uint32_t addr) { return phy + (map_phy_addr_space(addr) << 2); } static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data) { mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data); #ifdef DEBUG_PHY_IO printf("0x%06x,0x%x\n", addr, data); #endif } static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr) { uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr)); #ifdef DEBUG_PHY_IO printf("R: 0x%06x,0x%x\n", addr, reg); #endif return reg; } #ifdef NXP_APPLY_MAX_CDD #define CDD_VAL_READ_ADDR (0x054012) #define CDD_DATA_LEN (60) static void read_phy_reg(uint16_t *phy, uint32_t addr, uint16_t *buf, uint32_t len) { uint32_t i = 0U; for (i = 0U; i < len/2; i++) { buf[i] = phy_io_read16(phy, (addr + i)); } } static uint32_t findrank(uint32_t cs_in_use) { uint32_t val = 0U; switch (cs_in_use) { case U(0xf): val = 4U; break; case U(0x3): val = 2U; break; case U(0x1): val = 1U; break; default: printf("Error - Invalid cs_in_use value\n"); } return val; } static uint8_t findmax(uint8_t *buf, uint32_t len) { uint8_t max = 0U; uint32_t i = 0U; for (i = 0U; i < len; i++) { if (buf[i] > max) { max = buf[i]; } } return max; } static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq, uint32_t *tcfg0, uint32_t *tcfg4) { uint8_t cdd[CDD_DATA_LEN+4] = {0U}; uint32_t i, val = 0U; uint16_t *phy; uint8_t buf[16] = {U(0x0)}; uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U; uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U; uint8_t tmp = U(0x0); uint8_t *c = NULL; for (i = 0U; i < NUM_OF_DDRC; i++) { phy = phy_ptr[i]; if (phy == NULL) { continue; } phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, U(0x0)); read_phy_reg(phy, CDD_VAL_READ_ADDR, (uint16_t *)&cdd, CDD_DATA_LEN); phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, U(0x1)); /* CDD values and address * * 0x054012 0x24 cdd[0] CDD[X][X] * 0x054012 0x25 cdd[1] RR[3][2] * 0x054013 0x26 cdd[2] RR[3][1] * 0x054013 0x27 cdd[3] RR[3][0] * 0x054014 0x28 cdd[4] RR[2][3] * 0x054014 0x29 cdd[5] RR[2][1] * 0x054015 0x2a cdd[6] RR[2][0] * 0x054015 0x2b cdd[7] RR[1][3] * 0x054016 0x2c cdd[8] RR[1][2] * 0x054016 0x2d cdd[9] RR[1][0] * 0x054017 0x2e cdd[10] RR[0][3] * 0x054017 0x2f cdd[11] RR[0][2] * 0x054018 0x30 cdd[12] RR[0][1] * 0x054018 0x31 cdd[13] WW[3][2] * 0x054019 0x32 cdd[14] WW[3][1] * 0x054019 0x33 cdd[15] WW[3][0] * 0x05401a 0x34 cdd[16] WW[2][3] * 0x05401a 0x35 cdd[17] WW[2][1] * 0x05401b 0x36 cdd[18] WW[2][0] * 0x05401b 0x37 cdd[19] WW[1][3] * 0x05401c 0x38 cdd[20] WW[1][2] * 0x05401c 0x39 cdd[21] WW[1][0] * 0x05401d 0x3a cdd[22] WW[0][3] * 0x05401d 0x3b cdd[23] WW[0][2] * 0x05401e 0x3c cdd[24] WW[0][1] * 0x05401e 0x3d cdd[25] RW[3][3] * 0x05401f 0x3e cdd[26] RW[3][2] * 0x05401f 0x3f cdd[27] RW[3][1] * 0x054020 0x40 cdd[28] RW[3][0] * 0x054020 0x41 cdd[29] RW[2][3] * 0x054021 0x42 cdd[30] RW[2][2] * 0x054021 0x43 cdd[31] RW[2][1] * 0x054022 0x44 cdd[32] RW[2][0] * 0x054022 0x45 cdd[33] RW[1][3] * 0x054023 0x46 cdd[34] RW[1][2] * 0x054023 0x47 cdd[35] RW[1][1] * 0x054024 0x48 cdd[36] RW[1][0] * 0x054024 0x49 cdd[37] RW[0][3] * 0x054025 0x4a cdd[38] RW[0][2] * 0x054025 0x4b cdd[39] RW[0][1] * 0x054026 0x4c cdd[40] RW[0][0] * 0x054026 0x4d cdd[41] WR[3][3] * 0x054027 0x4e cdd[42] WR[3][2] * 0x054027 0x4f cdd[43] WR[3][1] * 0x054028 0x50 cdd[44] WR[3][0] * 0x054028 0x51 cdd[45] WR[2][3] * 0x054029 0x52 cdd[46] WR[2][2] * 0x054029 0x53 cdd[47] WR[2][1] * 0x05402a 0x54 cdd[48] WR[2][0] * 0x05402a 0x55 cdd[49] WR[1][3] * 0x05402b 0x56 cdd[50] WR[1][2] * 0x05402b 0x57 cdd[51] WR[1][1] * 0x05402c 0x58 cdd[52] WR[1][0] * 0x05402c 0x59 cdd[53] WR[0][3] * 0x05402d 0x5a cdd[54] WR[0][2] * 0x05402d 0x5b cdd[55] WR[0][1] * 0x05402e 0x5c cdd[56] WR[0][0] * 0x05402e 0x5d cdd[57] CDD[Y][Y] */ switch (rank) { case 1U: tmp = rwmax; rwmax = cdd[40]; if (tmp > rwmax) { rwmax = tmp; } tmp = wrmax; wrmax = cdd[56]; if (tmp > wrmax) { wrmax = tmp; } break; case 2U: buf[0] = cdd[12]; buf[1] = cdd[9]; tmp = rrmax; rrmax = findmax(buf, 2U); if (tmp > rrmax) { rrmax = tmp; } buf[0] = cdd[24]; buf[1] = cdd[21]; tmp = wwmax; wwmax = findmax(buf, 2U); if (tmp > wwmax) { wwmax = tmp; } buf[0] = cdd[40]; buf[1] = cdd[39]; buf[2] = cdd[36]; buf[3] = cdd[35]; tmp = rwmax; rwmax = findmax(buf, 4U); if (tmp > rwmax) { rwmax = tmp; } buf[0] = cdd[56]; buf[1] = cdd[55]; buf[2] = cdd[52]; buf[3] = cdd[51]; tmp = wrmax; wrmax = findmax(buf, 4U); if (tmp > wrmax) { wrmax = tmp; } break; case 4U: tmp = rrmax; c = &cdd[1]; rrmax = findmax(c, 12U); if (tmp > rrmax) { rrmax = tmp; } tmp = wwmax; c = &cdd[13]; wwmax = findmax(c, 12U); if (tmp > wwmax) { wwmax = tmp; } tmp = rwmax; c = &cdd[25]; rwmax = findmax(c, 16U); if (tmp > rwmax) { rwmax = tmp; } tmp = wrmax; c = &cdd[41]; wrmax = findmax(c, 16U); if (tmp > wrmax) { wrmax = tmp; } break; } } rrmax += 3U; wwmax += 4U; if (wwmax > 7U) { wwmax = 7U; } if (rrmax > 7U) { rrmax = 7U; } if (wrmax > U(0xf)) { wrmax = 0U; } if (rwmax > U(0x7)) { rwmax = U(0x7); } val = *tcfg0; tww = (val >> 24U) & U(0x3); trr = (val >> 26U) & U(0x3); twr = (val >> 28U) & U(0x3); trw = (val >> 30U) & U(0x3); val = *tcfg4; tww = tww | (((val >> 8U) & U(0x1)) << 2U); trr = trr | (((val >> 10U) & U(0x1)) << 2U); twr = twr | (((val >> 12U) & U(0x1)) << 2U); trw = trw | (((val >> 14U) & U(0x3)) << 2U); if (trr > rrmax) { rrmax = trr; } if (tww > wwmax) { wwmax = tww; } if (trw > rwmax) { rwmax = trw; } if (twr > wrmax) { wrmax = twr; } debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n", rrmax, wwmax, rwmax, wrmax); val = ((wwmax & U(0x3)) << 24U) | ((rrmax & U(0x3)) << 26U) | ((wrmax & U(0x3)) << 28U) | ((rwmax & U(0x3)) << 30U); *tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val); val = (((wwmax >> 2U) & U(0x1)) << 8U) | (((rrmax >> 2U) & U(0x1)) << 10U) | (((wrmax >> 2U) & U(0x1)) << 12U) | (((rwmax >> 2U) & U(0x3)) << 14U); *tcfg4 = (*tcfg4 & U(0xffff00ff)) | val; } #endif #ifdef NXP_WARM_BOOT int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store, uint32_t num_of_phy, int train2d) { uint16_t *phy = NULL, value = 0x0; uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U; int i = 0, j = 0, ret = -EINVAL; ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE); if (ret != 0) { return -EINVAL; } for (j = 0; j < num_of_phy; j++) { /* Save training values of all PHYs */ phy = phy_ptr[j]; size = sizeof(training_1D_values); num_of_regs = ARRAY_SIZE(training_1D_values); /* Enable access to the internal CSRs */ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0x0); /* Enable clocks in case they were disabled. */ phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, 0x3); if (train2d != 0) { /* Address to store training values is * to be appended for next PHY */ phy_store = address_to_store + (j * (sizeof(training_1D_values) + sizeof(training_2D_values))); } else { phy_store = address_to_store + (j * (sizeof(training_1D_values))); } debug("Saving 1D Training reg val at: %d\n", phy_store); for (i = 0; i < num_of_regs; i++) { value = phy_io_read16(phy, training_1D_values[i].addr); #ifdef DEBUG_WARM_RESET debug("%d. Reg: %x, value: %x PHY: %p\n", i, training_1D_values[i].addr, value, phy_io_addr(phy, training_1D_values[i].addr)); #endif training_1D_values[i].data = value; } /* Storing 1D training values on flash */ ret = xspi_write(phy_store, (void *)training_1D_values, size); if (train2d != 0) { phy_store = phy_store+size; size = sizeof(training_2D_values); num_of_regs = ARRAY_SIZE(training_2D_values); debug("Saving 2D Training reg val at:%d\n", phy_store); for (i = 0; i < num_of_regs; i++) { value = phy_io_read16(phy, training_2D_values[i].addr); training_2D_values[i].data = value; #ifdef DEBUG_WARM_RESET debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n", i, training_2D_values[i].addr, value, phy_io_addr(phy, training_2D_values[i].addr)); #endif } /* Storing 2D training values on flash */ ret = xspi_write(phy_store, training_2D_values, size); } /* Disable clocks in case they were disabled. */ phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, 0x0); /* Disable access to the internal CSRs */ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0x1); } if (ret != 0) { return -EINVAL; } return 0; } int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore, uint32_t num_of_phy, int train2d) { uint16_t *phy = NULL; uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U; int i = 0, j = 0, ret = -EINVAL; debug("Restoring Training register values\n"); for (j = 0; j < num_of_phy; j++) { phy = phy_ptr[j]; size = sizeof(training_1D_values); num_of_regs = ARRAY_SIZE(training_1D_values); if (train2d != 0) { /* The address to restore training values is * to be appended for next PHY */ phy_store = address_to_restore + (j * (sizeof(training_1D_values) + sizeof(training_2D_values))); } else { phy_store = address_to_restore + (j * (sizeof(training_1D_values))); } /* Enable access to the internal CSRs */ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0x0); /* Enable clocks in case they were disabled. */ phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, 0x3); /* Reading 1D training values from flash*/ ret = xspi_read(phy_store, (uint32_t *)training_1D_values, size); debug("Restoring 1D Training reg val at:%08x\n", phy_store); for (i = 0; i < num_of_regs; i++) { phy_io_write16(phy, training_1D_values[i].addr, training_1D_values[i].data); #ifdef DEBUG_WARM_RESET debug("%d. Reg: %x, value: %x PHY: %p\n", i, training_1D_values[i].addr, training_1D_values[i].data, phy_io_addr(phy, training_1D_values[i].addr)); #endif } if (train2d != 0) { phy_store = phy_store + size; size = sizeof(training_2D_values); num_of_regs = ARRAY_SIZE(training_2D_values); /* Reading 2D training values from flash */ ret = xspi_read(phy_store, (uint32_t *)training_2D_values, size); debug("Restoring 2D Training reg val at:%08x\n", phy_store); for (i = 0; i < num_of_regs; i++) { phy_io_write16(phy, training_2D_values[i].addr, training_2D_values[i].data); #ifdef DEBUG_WARM_RESET debug("%d. Reg: %x, value: %x PHY: %p\n", i, training_2D_values[i].addr, training_2D_values[i].data, phy_io_addr(phy, training_1D_values[i].addr)); #endif } } /* Disable clocks in case they were disabled. */ phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, 0x0); /* Disable access to the internal CSRs */ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0x1); } if (ret != 0) { return -EINVAL; } return 0; } #endif static void load_pieimage(uint16_t *phy, enum dimm_types dimm_type) { int i; int size; const struct pie *image = NULL; switch (dimm_type) { case UDIMM: case SODIMM: case NODIMM: image = pie_udimm; size = ARRAY_SIZE(pie_udimm); break; case RDIMM: image = pie_rdimm; size = ARRAY_SIZE(pie_rdimm); break; case LRDIMM: image = pie_lrdimm; size = ARRAY_SIZE(pie_lrdimm); break; default: printf("Unsupported DIMM type\n"); break; } if (image != NULL) { for (i = 0; i < size; i++) phy_io_write16(phy, image[i].addr, image[i].data); } } static void prog_acsm_playback(uint16_t *phy, const struct input *input, const void *msg) { int vec; const struct ddr4r1d *msg_blk; uint16_t acsmplayback[2][3]; uint32_t f0rc0a; uint32_t f0rc3x; uint32_t f0rc5x; if (input->basic.dimm_type != RDIMM) { return; } msg_blk = msg; f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0); f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300); f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500); acsmplayback[0][0] = U(0x3ff) & f0rc0a; acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U; acsmplayback[0][1] = U(0x3ff) & f0rc3x; acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U; acsmplayback[0][2] = U(0x3ff) & f0rc5x; acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U; for (vec = 0; vec < 3; vec++) { phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr + (vec << 1)), acsmplayback[0][vec]); phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr + (vec << 1)), acsmplayback[1][vec]); } } static void prog_acsm_ctr(uint16_t *phy, const struct input *input) { if (input->basic.dimm_type != RDIMM) { return; } phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr, 0xf << csr_acsm_cke_enb_lsb); phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr, csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask); } static void prog_cal_rate_run(uint16_t *phy, const struct input *input) { int cal_rate; int cal_interval; int cal_once; uint32_t addr; cal_interval = input->adv.cal_interval; cal_once = input->adv.cal_once; cal_rate = 0x1 << csr_cal_run_lsb | cal_once << csr_cal_once_lsb | cal_interval << csr_cal_interval_lsb; addr = t_master | csr_cal_rate_addr; phy_io_write16(phy, addr, cal_rate); } static void prog_seq0bdly0(uint16_t *phy, const struct input *input) { int ps_count[4]; int frq; uint32_t addr; int lower_freq_opt = 0; __unused const soc_info_t *soc_info; frq = input->basic.frequency >> 1; ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/ if (input->basic.frequency < 400) { lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3; } else if (input->basic.frequency < 533) { lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11; } /* 1.0 * frq / 4 - lower_freq */ ps_count[1] = (frq >> 2) - lower_freq_opt; ps_count[2] = (frq << 1) + (frq >> 1); /* 10.0 * frq / 4 */ #ifdef DDR_PLL_FIX soc_info = get_soc_info(); if (soc_info->svr_reg.bf.maj_ver == 1) { ps_count[0] = 0x520; /* seq0bdly0 */ ps_count[1] = 0xa41; /* seq0bdly1 */ ps_count[2] = 0x668a; /* seq0bdly2 */ } #endif if (frq > 266) { ps_count[3] = 44; } else if (frq > 200) { ps_count[3] = 33; } else { ps_count[3] = 16; } addr = t_master | csr_seq0bdly0_addr; phy_io_write16(phy, addr, ps_count[0]); debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr)); addr = t_master | csr_seq0bdly1_addr; phy_io_write16(phy, addr, ps_count[1]); debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr)); addr = t_master | csr_seq0bdly2_addr; phy_io_write16(phy, addr, ps_count[2]); debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr)); addr = t_master | csr_seq0bdly3_addr; phy_io_write16(phy, addr, ps_count[3]); debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr)); } /* Only RDIMM requires msg_blk */ static void i_load_pie(uint16_t **phy_ptr, const struct input *input, const void *msg) { int i; uint16_t *phy; for (i = 0; i < NUM_OF_DDRC; i++) { phy = phy_ptr[i]; if (phy == NULL) { continue; } phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0U); load_pieimage(phy, input->basic.dimm_type); prog_seq0bdly0(phy, input); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr, U(0x0000)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr, U(0x0173)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr, U(0x0060)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr, U(0x6110)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr, U(0x2152)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr, U(0xdfbd)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr, input->basic.dimm_type == RDIMM && input->adv.phy_gen2_umctl_opt == 1U ? U(0x6000) : U(0xffff)); phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr, U(0x6152)); prog_acsm_playback(phy, input, msg); /* rdimm */ prog_acsm_ctr(phy, input); /* rdimm */ phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1)); prog_cal_rate_run(phy, input); phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, input->basic.dimm_type == RDIMM ? U(0x2) : 0U); phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U); } } static void phy_gen2_init_input(struct input *input) { int i; input->adv.dram_byte_swap = 0; input->adv.ext_cal_res_val = 0; input->adv.tx_slew_rise_dq = 0xf; input->adv.tx_slew_fall_dq = 0xf; input->adv.tx_slew_rise_ac = 0xf; input->adv.tx_slew_fall_ac = 0xf; input->adv.mem_alert_en = 0; input->adv.mem_alert_puimp = 5; input->adv.mem_alert_vref_level = 0x29; input->adv.mem_alert_sync_bypass = 0; input->adv.cal_interval = 0x9; input->adv.cal_once = 0; input->adv.dis_dyn_adr_tri = 0; input->adv.is2ttiming = 0; input->adv.d4rx_preamble_length = 0; input->adv.d4tx_preamble_length = 0; for (i = 0; i < 7; i++) { debug("mr[%d] = 0x%x\n", i, input->mr[i]); } debug("input->cs_d0 = 0x%x\n", input->cs_d0); debug("input->cs_d1 = 0x%x\n", input->cs_d1); debug("input->mirror = 0x%x\n", input->mirror); debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance); debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance); debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance); for (i = 0; i < 4; i++) { debug("odt[%d] = 0x%x\n", i, input->odt[i]); } if (input->basic.dimm_type == RDIMM) { for (i = 0; i < 16; i++) { debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]); } debug("input->rcw3x = 0x%x\n", input->rcw3x); } } /* * All protocols share the same base structure of message block. * RDIMM and LRDIMM have more entries defined than UDIMM. * Create message blocks for 1D and 2D training. * Update len with message block size. */ static int phy_gen2_msg_init(void *msg_1d, void *msg_2d, const struct input *input) { struct ddr4u1d *msg_blk = msg_1d; struct ddr4u2d *msg_blk_2d = msg_2d; struct ddr4r1d *msg_blk_r; struct ddr4lr1d *msg_blk_lr; switch (input->basic.dimm_type) { case UDIMM: case SODIMM: case NODIMM: msg_blk->dram_type = U(0x2); break; case RDIMM: msg_blk->dram_type = U(0x4); break; case LRDIMM: msg_blk->dram_type = U(0x5); break; default: ERROR("Unsupported DIMM type\n"); return -EINVAL; } msg_blk->pstate = 0U; /*Enable quickRd2D, a substage of read deskew, to 1D training.*/ msg_blk->reserved00 = U(0x20); /*Enable High-Effort WrDQ1D.*/ msg_blk->reserved00 |= U(0x40); /* Enable 1D extra effort training.*/ msg_blk->reserved1c[3] = U(0x3); if (input->basic.dimm_type == LRDIMM) { msg_blk->sequence_ctrl = U(0x3f1f); } else { msg_blk->sequence_ctrl = U(0x031f); } msg_blk->phy_config_override = 0U; #ifdef DDR_PHY_DEBUG msg_blk->hdt_ctrl = U(0x5); #else msg_blk->hdt_ctrl = U(0xc9); #endif msg_blk->msg_misc = U(0x0); msg_blk->dfimrlmargin = U(0x1); msg_blk->phy_vref = input->vref ? input->vref : U(0x61); msg_blk->cs_present = input->cs_d0 | input->cs_d1; msg_blk->cs_present_d0 = input->cs_d0; msg_blk->cs_present_d1 = input->cs_d1; if (input->mirror != 0) { msg_blk->addr_mirror = U(0x0a); /* odd CS are mirrored */ } msg_blk->share2dvref_result = 1U; msg_blk->acsm_odt_ctrl0 = input->odt[0]; msg_blk->acsm_odt_ctrl1 = input->odt[1]; msg_blk->acsm_odt_ctrl2 = input->odt[2]; msg_blk->acsm_odt_ctrl3 = input->odt[3]; msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 + input->basic.num_active_dbyte_dfi1) * 8; msg_blk->x16present = input->basic.dram_data_width == 0x10 ? msg_blk->cs_present : 0; msg_blk->d4misc = U(0x1); msg_blk->cs_setup_gddec = U(0x1); msg_blk->rtt_nom_wr_park0 = 0U; msg_blk->rtt_nom_wr_park1 = 0U; msg_blk->rtt_nom_wr_park2 = 0U; msg_blk->rtt_nom_wr_park3 = 0U; msg_blk->rtt_nom_wr_park4 = 0U; msg_blk->rtt_nom_wr_park5 = 0U; msg_blk->rtt_nom_wr_park6 = 0U; msg_blk->rtt_nom_wr_park7 = 0U; msg_blk->mr0 = input->mr[0]; msg_blk->mr1 = input->mr[1]; msg_blk->mr2 = input->mr[2]; msg_blk->mr3 = input->mr[3]; msg_blk->mr4 = input->mr[4]; msg_blk->mr5 = input->mr[5]; msg_blk->mr6 = input->mr[6]; if ((msg_blk->mr4 & U(0x1c0)) != 0U) { ERROR("Setting DRAM CAL mode is not supported\n"); } msg_blk->alt_cas_l = 0U; msg_blk->alt_wcas_l = 0U; msg_blk->dramfreq = input->basic.frequency * 2U; msg_blk->pll_bypass_en = input->basic.pll_bypass; msg_blk->dfi_freq_ratio = input->basic.dfi_freq_ratio == 0U ? 1U : input->basic.dfi_freq_ratio == 1U ? 2U : 4U; msg_blk->bpznres_val = input->adv.ext_cal_res_val; msg_blk->disabled_dbyte = 0U; debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type); debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl); debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg); debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present); debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq); debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en); debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio); debug("msg_blk->phy_odt_impedance = 0x%x\n", msg_blk->phy_odt_impedance); debug("msg_blk->phy_drv_impedance = 0x%x\n", msg_blk->phy_drv_impedance); debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val); debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs); debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0); debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1); debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2); debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3); /* RDIMM only */ if (input->basic.dimm_type == RDIMM || input->basic.dimm_type == LRDIMM) { msg_blk_r = (struct ddr4r1d *)msg_blk; if (msg_blk_r->cs_present_d0 != 0U) { msg_blk_r->f0rc00_d0 = input->rcw[0]; msg_blk_r->f0rc01_d0 = input->rcw[1]; msg_blk_r->f0rc02_d0 = input->rcw[2]; msg_blk_r->f0rc03_d0 = input->rcw[3]; msg_blk_r->f0rc04_d0 = input->rcw[4]; msg_blk_r->f0rc05_d0 = input->rcw[5]; msg_blk_r->f0rc06_d0 = input->rcw[6]; msg_blk_r->f0rc07_d0 = input->rcw[7]; msg_blk_r->f0rc08_d0 = input->rcw[8]; msg_blk_r->f0rc09_d0 = input->rcw[9]; msg_blk_r->f0rc0a_d0 = input->rcw[10]; msg_blk_r->f0rc0b_d0 = input->rcw[11]; msg_blk_r->f0rc0c_d0 = input->rcw[12]; msg_blk_r->f0rc0d_d0 = input->rcw[13]; msg_blk_r->f0rc0e_d0 = input->rcw[14]; msg_blk_r->f0rc0f_d0 = input->rcw[15]; msg_blk_r->f0rc3x_d0 = input->rcw3x; } if (msg_blk_r->cs_present_d1 != 0) { msg_blk_r->f0rc00_d1 = input->rcw[0]; msg_blk_r->f0rc01_d1 = input->rcw[1]; msg_blk_r->f0rc02_d1 = input->rcw[2]; msg_blk_r->f0rc03_d1 = input->rcw[3]; msg_blk_r->f0rc04_d1 = input->rcw[4]; msg_blk_r->f0rc05_d1 = input->rcw[5]; msg_blk_r->f0rc06_d1 = input->rcw[6]; msg_blk_r->f0rc07_d1 = input->rcw[7]; msg_blk_r->f0rc08_d1 = input->rcw[8]; msg_blk_r->f0rc09_d1 = input->rcw[9]; msg_blk_r->f0rc0a_d1 = input->rcw[10]; msg_blk_r->f0rc0b_d1 = input->rcw[11]; msg_blk_r->f0rc0c_d1 = input->rcw[12]; msg_blk_r->f0rc0d_d1 = input->rcw[13]; msg_blk_r->f0rc0e_d1 = input->rcw[14]; msg_blk_r->f0rc0f_d1 = input->rcw[15]; msg_blk_r->f0rc3x_d1 = input->rcw3x; } if (input->basic.dimm_type == LRDIMM) { msg_blk_lr = (struct ddr4lr1d *)msg_blk; msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0; msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1; msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0; msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1; } } /* below is different for 1D and 2D message block */ if (input->basic.train2d != 0) { memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d)); /*High-Effort WrDQ1D is applicable to 2D traning also*/ msg_blk_2d->reserved00 |= U(0x40); msg_blk_2d->sequence_ctrl = U(0x0061); msg_blk_2d->rx2d_train_opt = 0U; msg_blk_2d->tx2d_train_opt = 0U; msg_blk_2d->share2dvref_result = 1U; msg_blk_2d->delay_weight2d = U(0x20); msg_blk_2d->voltage_weight2d = U(0x80); debug("rx2d_train_opt %d, tx2d_train_opt %d\n", msg_blk_2d->rx2d_train_opt, msg_blk_2d->tx2d_train_opt); } msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) || ((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U : input->adv.is2ttiming; return 0; } static void prog_tx_pre_drv_mode(uint16_t *phy, const struct input *input) { int lane, byte, b_addr, c_addr, p_addr; int tx_slew_rate, tx_pre_p, tx_pre_n; int tx_pre_drv_mode = 0x2; uint32_t addr; /* Program TxPreDrvMode with 0x2 */ /* FIXME: TxPreDrvMode depends on DramType? */ tx_pre_p = input->adv.tx_slew_rise_dq; tx_pre_n = input->adv.tx_slew_fall_dq; tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb | tx_pre_p << csr_tx_pre_p_lsb | tx_pre_n << csr_tx_pre_n_lsb; p_addr = 0; for (byte = 0; byte < input->basic.num_dbyte; byte++) { c_addr = byte << 12; for (lane = 0; lane <= 1; lane++) { b_addr = lane << 8; addr = p_addr | t_dbyte | c_addr | b_addr | csr_tx_slew_rate_addr; phy_io_write16(phy, addr, tx_slew_rate); } } } static void prog_atx_pre_drv_mode(uint16_t *phy, const struct input *input) { int anib, c_addr; int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode, ck_anib_inst[2]; uint32_t addr; atx_pre_n = input->adv.tx_slew_fall_ac; atx_pre_p = input->adv.tx_slew_rise_ac; if (input->basic.num_anib == 8) { ck_anib_inst[0] = 1; ck_anib_inst[1] = 1; } else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 || input->basic.num_anib == 13) { ck_anib_inst[0] = 4; ck_anib_inst[1] = 5; } else { ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib); return; } for (anib = 0; anib < input->basic.num_anib; anib++) { c_addr = anib << 12; if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) { atx_pre_drv_mode = 0; } else { atx_pre_drv_mode = 3; } atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb | atx_pre_n << csr_atx_pre_n_lsb | atx_pre_p << csr_atx_pre_p_lsb; addr = t_anib | c_addr | csr_atx_slew_rate_addr; phy_io_write16(phy, addr, atx_slew_rate); } } static void prog_enable_cs_multicast(uint16_t *phy, const struct input *input) { uint32_t addr = t_master | csr_enable_cs_multicast_addr; if (input->basic.dimm_type != RDIMM && input->basic.dimm_type != LRDIMM) { return; } phy_io_write16(phy, addr, input->adv.cast_cs_to_cid); } static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy, unsigned int ip_rev, const struct input *input, const struct ddr4lr1d *msg) { const struct ddr4lr1d *msg_blk; uint16_t dfi_xxdestm0 = 0U; uint16_t dfi_xxdestm1 = 0U; uint16_t dfi_xxdestm2 = 0U; uint16_t dfi_xxdestm3 = 0U; uint16_t dfi_rd_data_cs_dest_map; uint16_t dfi_wr_data_cs_dest_map; __unused const soc_info_t *soc_info; #ifdef ERRATA_DDR_A011396 /* Only apply to DDRC 5.05.00 */ soc_info = get_soc_info(); if ((soc_info->svr_reg.bf.maj_ver == 1U) && (ip_rev == U(0x50500))) { phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr, 0U); return; } #endif msg_blk = msg; switch (input->basic.dimm_type) { case UDIMM: case SODIMM: case NODIMM: if ((msg_blk->msg_misc & U(0x40)) != 0U) { dfi_rd_data_cs_dest_map = U(0xa0); dfi_wr_data_cs_dest_map = U(0xa0); phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr, dfi_rd_data_cs_dest_map); phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr, dfi_wr_data_cs_dest_map); } break; case LRDIMM: if (msg->cs_present_d1 != 0U) { dfi_xxdestm2 = 1U; dfi_xxdestm3 = 1U; } dfi_rd_data_cs_dest_map = dfi_xxdestm0 << csr_dfi_rd_destm0_lsb | dfi_xxdestm1 << csr_dfi_rd_destm1_lsb | dfi_xxdestm2 << csr_dfi_rd_destm2_lsb | dfi_xxdestm3 << csr_dfi_rd_destm3_lsb; dfi_wr_data_cs_dest_map = dfi_xxdestm0 << csr_dfi_wr_destm0_lsb | dfi_xxdestm1 << csr_dfi_wr_destm1_lsb | dfi_xxdestm2 << csr_dfi_wr_destm2_lsb | dfi_xxdestm3 << csr_dfi_wr_destm3_lsb; phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr, dfi_rd_data_cs_dest_map); phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr, dfi_wr_data_cs_dest_map); break; default: break; } } static void prog_pll_ctrl(uint16_t *phy, const struct input *input) { uint32_t addr; int pll_ctrl1 = 0x21; /* 000100001b */ int pll_ctrl4 = 0x17f; /* 101111111b */ int pll_test_mode = 0x24; /* 00100100b */ addr = t_master | csr_pll_ctrl1_addr; phy_io_write16(phy, addr, pll_ctrl1); debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr)); addr = t_master | csr_pll_test_mode_addr; phy_io_write16(phy, addr, pll_test_mode); debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr)); addr = t_master | csr_pll_ctrl4_addr; phy_io_write16(phy, addr, pll_ctrl4); debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr)); } static void prog_pll_ctrl2(uint16_t *phy, const struct input *input) { int pll_ctrl2; uint32_t addr = t_master | csr_pll_ctrl2_addr; if (input->basic.frequency / 2 < 235) { pll_ctrl2 = 0x7; } else if (input->basic.frequency / 2 < 313) { pll_ctrl2 = 0x6; } else if (input->basic.frequency / 2 < 469) { pll_ctrl2 = 0xb; } else if (input->basic.frequency / 2 < 625) { pll_ctrl2 = 0xa; } else if (input->basic.frequency / 2 < 938) { pll_ctrl2 = 0x19; } else if (input->basic.frequency / 2 < 1067) { pll_ctrl2 = 0x18; } else { pll_ctrl2 = 0x19; } phy_io_write16(phy, addr, pll_ctrl2); debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr)); } static void prog_dll_lck_param(uint16_t *phy, const struct input *input) { uint32_t addr = t_master | csr_dll_lockparam_addr; phy_io_write16(phy, addr, U(0x212)); debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr)); } static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input) { uint32_t addr = t_master | csr_dll_gain_ctl_addr; phy_io_write16(phy, addr, U(0x61)); debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr)); } static void prog_pll_pwr_dn(uint16_t *phy, const struct input *input) { uint32_t addr; addr = t_master | csr_pll_pwr_dn_addr; phy_io_write16(phy, addr, 0U); debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr)); } static void prog_ard_ptr_init_val(uint16_t *phy, const struct input *input) { int ard_ptr_init_val; uint32_t addr = t_master | csr_ard_ptr_init_val_addr; if (input->basic.frequency >= 933) { ard_ptr_init_val = 0x2; } else { ard_ptr_init_val = 0x1; } phy_io_write16(phy, addr, ard_ptr_init_val); } static void prog_dqs_preamble_control(uint16_t *phy, const struct input *input) { int data; uint32_t addr = t_master | csr_dqs_preamble_control_addr; const int wdqsextension = 0; const int lp4sttc_pre_bridge_rx_en = 0; const int lp4postamble_ext = 0; const int lp4tgl_two_tck_tx_dqs_pre = 0; const int position_dfe_init = 2; const int dll_rx_preamble_mode = 1; int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length; int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length; data = wdqsextension << csr_wdqsextension_lsb | lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb | lp4postamble_ext << csr_lp4postamble_ext_lsb | lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb | position_dfe_init << csr_position_dfe_init_lsb | two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb | two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb; phy_io_write16(phy, addr, data); data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb; addr = t_master | csr_dbyte_dll_mode_cntrl_addr; phy_io_write16(phy, addr, data); } static void prog_proc_odt_time_ctl(uint16_t *phy, const struct input *input) { int proc_odt_time_ctl; uint32_t addr = t_master | csr_proc_odt_time_ctl_addr; if (input->adv.wdqsext != 0) { proc_odt_time_ctl = 0x3; } else if (input->basic.frequency <= 933) { proc_odt_time_ctl = 0xa; } else if (input->basic.frequency <= 1200) { if (input->adv.d4rx_preamble_length == 1) { proc_odt_time_ctl = 0x2; } else { proc_odt_time_ctl = 0x6; } } else { if (input->adv.d4rx_preamble_length == 1) { proc_odt_time_ctl = 0x3; } else { proc_odt_time_ctl = 0x7; } } phy_io_write16(phy, addr, proc_odt_time_ctl); } static const struct impedance_mapping map[] = { { 29, 0x3f }, { 31, 0x3e }, { 33, 0x3b }, { 36, 0x3a }, { 39, 0x39 }, { 42, 0x38 }, { 46, 0x1b }, { 51, 0x1a }, { 57, 0x19 }, { 64, 0x18 }, { 74, 0x0b }, { 88, 0x0a }, { 108, 0x09 }, { 140, 0x08 }, { 200, 0x03 }, { 360, 0x02 }, { 481, 0x01 }, {} }; static int map_impedance(int strength) { const struct impedance_mapping *tbl = map; int val = 0; if (strength == 0) { return 0; } while (tbl->ohm != 0U) { if (strength < tbl->ohm) { val = tbl->code; break; } tbl++; } return val; } static int map_odtstren_p(int strength, int hard_macro_ver) { int val = -1; if (hard_macro_ver == 4) { if (strength == 0) { val = 0; } else if (strength == 120) { val = 0x8; } else if (strength == 60) { val = 0x18; } else if (strength == 40) { val = 0x38; } else { printf("error: unsupported ODTStrenP %d\n", strength); } } else { val = map_impedance(strength); } return val; } static void prog_tx_odt_drv_stren(uint16_t *phy, const struct input *input) { int lane, byte, b_addr, c_addr; int tx_odt_drv_stren; int odtstren_p, odtstren_n; uint32_t addr; odtstren_p = map_odtstren_p(input->adv.odtimpedance, input->basic.hard_macro_ver); if (odtstren_p < 0) { return; } odtstren_n = 0; /* always high-z */ tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p; for (byte = 0; byte < input->basic.num_dbyte; byte++) { c_addr = byte << 12; for (lane = 0; lane <= 1; lane++) { b_addr = lane << 8; addr = t_dbyte | c_addr | b_addr | csr_tx_odt_drv_stren_addr; phy_io_write16(phy, addr, tx_odt_drv_stren); } } } static int map_drvstren_fsdq_p(int strength, int hard_macro_ver) { int val = -1; if (hard_macro_ver == 4) { if (strength == 0) { val = 0x07; } else if (strength == 120) { val = 0x0F; } else if (strength == 60) { val = 0x1F; } else if (strength == 40) { val = 0x3F; } else { printf("error: unsupported drv_stren_fSDq_p %d\n", strength); } } else { val = map_impedance(strength); } return val; } static int map_drvstren_fsdq_n(int strength, int hard_macro_ver) { int val = -1; if (hard_macro_ver == 4) { if (strength == 0) { val = 0x00; } else if (strength == 120) { val = 0x08; } else if (strength == 60) { val = 0x18; } else if (strength == 40) { val = 0x38; } else { printf("error: unsupported drvStrenFSDqN %d\n", strength); } } else { val = map_impedance(strength); } return val; } static void prog_tx_impedance_ctrl1(uint16_t *phy, const struct input *input) { int lane, byte, b_addr, c_addr; int tx_impedance_ctrl1; int drv_stren_fsdq_p, drv_stren_fsdq_n; uint32_t addr; drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance, input->basic.hard_macro_ver); drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance, input->basic.hard_macro_ver); tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb | drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb; for (byte = 0; byte < input->basic.num_dbyte; byte++) { c_addr = byte << 12; for (lane = 0; lane <= 1; lane++) { b_addr = lane << 8; addr = t_dbyte | c_addr | b_addr | csr_tx_impedance_ctrl1_addr; phy_io_write16(phy, addr, tx_impedance_ctrl1); } } } static int map_adrv_stren_p(int strength, int hard_macro_ver) { int val = -1; if (hard_macro_ver == 4) { if (strength == 120) { val = 0x1c; } else if (strength == 60) { val = 0x1d; } else if (strength == 40) { val = 0x1f; } else { printf("error: unsupported aDrv_stren_p %d\n", strength); } } else { if (strength == 120) { val = 0x00; } else if (strength == 60) { val = 0x01; } else if (strength == 40) { val = 0x03; } else if (strength == 30) { val = 0x07; } else if (strength == 24) { val = 0x0f; } else if (strength == 20) { val = 0x1f; } else { printf("error: unsupported aDrv_stren_p %d\n", strength); } } return val; } static int map_adrv_stren_n(int strength, int hard_macro_ver) { int val = -1; if (hard_macro_ver == 4) { if (strength == 120) { val = 0x00; } else if (strength == 60) { val = 0x01; } else if (strength == 40) { val = 0x03; } else { printf("Error: unsupported ADrvStrenP %d\n", strength); } } else { if (strength == 120) { val = 0x00; } else if (strength == 60) { val = 0x01; } else if (strength == 40) { val = 0x03; } else if (strength == 30) { val = 0x07; } else if (strength == 24) { val = 0x0f; } else if (strength == 20) { val = 0x1f; } else { printf("Error: unsupported ADrvStrenP %d\n", strength); } } return val; } static void prog_atx_impedance(uint16_t *phy, const struct input *input) { int anib, c_addr; int atx_impedance; int adrv_stren_p; int adrv_stren_n; uint32_t addr; if (input->basic.hard_macro_ver == 4 && input->adv.atx_impedance == 20) { printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n"); return; } adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance, input->basic.hard_macro_ver); adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance, input->basic.hard_macro_ver); atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb | adrv_stren_p << csr_adrv_stren_p_lsb; for (anib = 0; anib < input->basic.num_anib; anib++) { c_addr = anib << 12; addr = t_anib | c_addr | csr_atx_impedance_addr; phy_io_write16(phy, addr, atx_impedance); } } static void prog_dfi_mode(uint16_t *phy, const struct input *input) { int dfi_mode; uint32_t addr; if (input->basic.dfi1exists == 1) { dfi_mode = 0x5; /* DFI1 exists but disabled */ } else { dfi_mode = 0x1; /* DFI1 does not physically exists */ } addr = t_master | csr_dfi_mode_addr; phy_io_write16(phy, addr, dfi_mode); } static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input) { uint32_t addr; addr = t_master | csr_acx4_anib_dis_addr; phy_io_write16(phy, addr, 0x0); debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr)); } static void prog_dfi_camode(uint16_t *phy, const struct input *input) { int dfi_camode = 2; uint32_t addr = t_master | csr_dfi_camode_addr; phy_io_write16(phy, addr, dfi_camode); } static void prog_cal_drv_str0(uint16_t *phy, const struct input *input) { int cal_drv_str0; int cal_drv_str_pd50; int cal_drv_str_pu50; uint32_t addr; cal_drv_str_pu50 = input->adv.ext_cal_res_val; cal_drv_str_pd50 = cal_drv_str_pu50; cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb | cal_drv_str_pd50; addr = t_master | csr_cal_drv_str0_addr; phy_io_write16(phy, addr, cal_drv_str0); } static void prog_cal_uclk_info(uint16_t *phy, const struct input *input) { int cal_uclk_ticks_per1u_s; uint32_t addr; cal_uclk_ticks_per1u_s = input->basic.frequency >> 1; if (cal_uclk_ticks_per1u_s < 24) { cal_uclk_ticks_per1u_s = 24; } addr = t_master | csr_cal_uclk_info_addr; phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s); } static void prog_cal_rate(uint16_t *phy, const struct input *input) { int cal_rate; int cal_interval; int cal_once; uint32_t addr; cal_interval = input->adv.cal_interval; cal_once = input->adv.cal_once; cal_rate = cal_once << csr_cal_once_lsb | cal_interval << csr_cal_interval_lsb; addr = t_master | csr_cal_rate_addr; phy_io_write16(phy, addr, cal_rate); } static void prog_vref_in_global(uint16_t *phy, const struct input *input, const struct ddr4u1d *msg) { int vref_in_global; int global_vref_in_dac = 0; int global_vref_in_sel = 0; uint32_t addr; /* * phy_vref_prcnt = msg->phy_vref / 128.0 * global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005; */ global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) / (5 * 128); vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb | global_vref_in_sel; addr = t_master | csr_vref_in_global_addr; phy_io_write16(phy, addr, vref_in_global); } static void prog_dq_dqs_rcv_cntrl(uint16_t *phy, const struct input *input) { int lane, byte, b_addr, c_addr; int dq_dqs_rcv_cntrl; int gain_curr_adj_defval = 0xb; int major_mode_dbyte = 3; int dfe_ctrl_defval = 0; int ext_vref_range_defval = 0; int sel_analog_vref = 1; uint32_t addr; #ifdef ERRATA_DDR_A050958 gain_curr_adj_defval = 0x1f; #endif dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb | major_mode_dbyte << csr_major_mode_dbyte_lsb | dfe_ctrl_defval << csr_dfe_ctrl_lsb | ext_vref_range_defval << csr_ext_vref_range_lsb | sel_analog_vref << csr_sel_analog_vref_lsb; for (byte = 0; byte < input->basic.num_dbyte; byte++) { c_addr = byte << 12; for (lane = 0; lane <= 1; lane++) { b_addr = lane << 8; addr = t_dbyte | c_addr | b_addr | csr_dq_dqs_rcv_cntrl_addr; phy_io_write16(phy, addr, dq_dqs_rcv_cntrl); } } } static void prog_mem_alert_control(uint16_t *phy, const struct input *input) { int mem_alert_control; int mem_alert_control2; int malertpu_en; int malertrx_en; int malertvref_level; int malertpu_stren; int malertsync_bypass; int malertdisable_val_defval = 1; uint32_t addr; if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) { malertpu_en = 1; malertrx_en = 1; malertpu_stren = input->adv.mem_alert_puimp; malertvref_level = input->adv.mem_alert_vref_level; malertsync_bypass = input->adv.mem_alert_sync_bypass; mem_alert_control = malertdisable_val_defval << 14 | malertrx_en << 13 | malertpu_en << 12 | malertpu_stren << 8 | malertvref_level; mem_alert_control2 = malertsync_bypass << csr_malertsync_bypass_lsb; addr = t_master | csr_mem_alert_control_addr; phy_io_write16(phy, addr, mem_alert_control); addr = t_master | csr_mem_alert_control2_addr; phy_io_write16(phy, addr, mem_alert_control2); } } static void prog_dfi_freq_ratio(uint16_t *phy, const struct input *input) { int dfi_freq_ratio; uint32_t addr = t_master | csr_dfi_freq_ratio_addr; dfi_freq_ratio = input->basic.dfi_freq_ratio; phy_io_write16(phy, addr, dfi_freq_ratio); } static void prog_tristate_mode_ca(uint16_t *phy, const struct input *input) { int tristate_mode_ca; int dis_dyn_adr_tri; int ddr2tmode; int ck_dis_val_def = 1; uint32_t addr = t_master | csr_tristate_mode_ca_addr; dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri; ddr2tmode = input->adv.is2ttiming; tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb | ddr2tmode << csr_ddr2tmode_lsb | dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb; phy_io_write16(phy, addr, tristate_mode_ca); } static void prog_dfi_xlat(uint16_t *phy, const struct input *input) { uint16_t loop_vector; int dfifreqxlat_dat; int pllbypass_dat; uint32_t addr; /* fIXME: Shall unused P1, P2, P3 be bypassed? */ pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */ for (loop_vector = 0; loop_vector < 8; loop_vector++) { if (loop_vector == 0) { dfifreqxlat_dat = pllbypass_dat + 0x5555; } else if (loop_vector == 7) { dfifreqxlat_dat = 0xf000; } else { dfifreqxlat_dat = 0x5555; } addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector); phy_io_write16(phy, addr, dfifreqxlat_dat); } } static void prog_dbyte_misc_mode(uint16_t *phy, const struct input *input, const struct ddr4u1d *msg) { int dbyte_misc_mode; int dq_dqs_rcv_cntrl1; int dq_dqs_rcv_cntrl1_1; int byte, c_addr; uint32_t addr; dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb; dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb | 0x1 << csr_power_down_rcvr_dqs_lsb | 0x1 << csr_rx_pad_standby_en_lsb; dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb | csr_rx_pad_standby_en_mask); for (byte = 0; byte < input->basic.num_dbyte; byte++) { c_addr = byte << 12; if (byte <= input->basic.num_active_dbyte_dfi0 - 1) { /* disable RDBI lane if not used. */ if ((input->basic.dram_data_width != 4) && (((msg->mr5 >> 12) & 0x1) == 0)) { addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr; phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1); } } else { addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr; phy_io_write16(phy, addr, dbyte_misc_mode); addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr; phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1); } } } static void prog_master_x4config(uint16_t *phy, const struct input *input) { int master_x4config; int x4tg; uint32_t addr = t_master | csr_master_x4config_addr; x4tg = input->basic.dram_data_width == 4 ? 0xf : 0; master_x4config = x4tg << csr_x4tg_lsb; phy_io_write16(phy, addr, master_x4config); } static void prog_dmipin_present(uint16_t *phy, const struct input *input, const struct ddr4u1d *msg) { int dmipin_present; uint32_t addr = t_master | csr_dmipin_present_addr; dmipin_present = (msg->mr5 >> 12) & 0x1; phy_io_write16(phy, addr, dmipin_present); } static void prog_dfi_phyupd(uint16_t *phy, const struct input *input) { int dfiphyupd_dat; uint32_t addr; addr = t_master | (csr_dfiphyupd_addr); dfiphyupd_dat = phy_io_read16(phy, addr) & ~csr_dfiphyupd_threshold_mask; phy_io_write16(phy, addr, dfiphyupd_dat); } static void prog_cal_misc2(uint16_t *phy, const struct input *input) { int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat; uint32_t addr; addr = t_master | (csr_cal_misc2_addr); cal_misc2_dat = phy_io_read16(phy, addr) | (1 << csr_cal_misc2_err_dis); phy_io_write16(phy, addr, cal_misc2_dat); addr = t_master | (csr_cal_offsets_addr); cal_drv_pdth_data = 0x9 << 6; cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask) | cal_drv_pdth_data; phy_io_write16(phy, addr, cal_offsets_dat); } static int c_init_phy_config(uint16_t **phy_ptr, unsigned int ip_rev, const struct input *input, const void *msg) { int i; uint16_t *phy; __unused const soc_info_t *soc_info; for (i = 0; i < NUM_OF_DDRC; i++) { phy = phy_ptr[i]; if (phy == NULL) { continue; } debug("Initialize PHY %d config\n", i); prog_dfi_phyupd(phy, input); prog_cal_misc2(phy, input); prog_tx_pre_drv_mode(phy, input); prog_atx_pre_drv_mode(phy, input); prog_enable_cs_multicast(phy, input); /* rdimm and lrdimm */ prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg); prog_pll_ctrl2(phy, input); #ifdef DDR_PLL_FIX soc_info = get_soc_info(); debug("SOC_SI_REV = %x\n", soc_info->svr_reg.bf.maj_ver); if (soc_info->svr_reg.bf.maj_ver == 1) { prog_pll_pwr_dn(phy, input); /*Enable FFE aka TxEqualizationMode for rev1 SI*/ phy_io_write16(phy, 0x010048, 0x1); } #endif prog_ard_ptr_init_val(phy, input); prog_dqs_preamble_control(phy, input); prog_dll_lck_param(phy, input); prog_dll_gain_ctl(phy, input); prog_proc_odt_time_ctl(phy, input); prog_tx_odt_drv_stren(phy, input); prog_tx_impedance_ctrl1(phy, input); prog_atx_impedance(phy, input); prog_dfi_mode(phy, input); prog_dfi_camode(phy, input); prog_cal_drv_str0(phy, input); prog_cal_uclk_info(phy, input); prog_cal_rate(phy, input); prog_vref_in_global(phy, input, msg); prog_dq_dqs_rcv_cntrl(phy, input); prog_mem_alert_control(phy, input); prog_dfi_freq_ratio(phy, input); prog_tristate_mode_ca(phy, input); prog_dfi_xlat(phy, input); prog_dbyte_misc_mode(phy, input, msg); prog_master_x4config(phy, input); prog_dmipin_present(phy, input, msg); prog_acx4_anib_dis(phy, input); } return 0; } static uint32_t get_mail(uint16_t *phy, int stream) { int timeout; uint32_t mail = 0U; timeout = TIMEOUTDEFAULT; while (((--timeout) != 0) && ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs) & uct_write_prot_shadow_mask) != 0)) { mdelay(10); } if (timeout == 0) { ERROR("Timeout getting mail from PHY\n"); return 0xFFFF; } mail = phy_io_read16(phy, t_apbonly | csr_uct_write_only_shadow); if (stream != 0) { mail |= phy_io_read16(phy, t_apbonly | csr_uct_dat_write_only_shadow) << 16; } /* Ack */ phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0); timeout = TIMEOUTDEFAULT; while (((--timeout) != 0) && ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs) & uct_write_prot_shadow_mask) == 0)) { mdelay(1); } if (timeout == 0) { ERROR("Timeout ack PHY mail\n"); } /* completed */ phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U); return mail; } #ifdef DDR_PHY_DEBUG static const char *lookup_msg(uint32_t index, int train2d) { int i; int size; const struct phy_msg *messages; const char *ptr = NULL; if (train2d != 0) { messages = messages_2d; size = ARRAY_SIZE(messages_2d); } else { messages = messages_1d; size = ARRAY_SIZE(messages_1d); } for (i = 0; i < size; i++) { if (messages[i].index == index) { ptr = messages[i].msg; break; } } return ptr; } #endif #define MAX_ARGS 32 static void decode_stream_message(uint16_t *phy, int train2d) { uint32_t index __unused; __unused const char *format; __unused uint32_t args[MAX_ARGS]; __unused int i; #ifdef DDR_PHY_DEBUG index = get_mail(phy, 1); if ((index & 0xffff) > MAX_ARGS) { /* up to MAX_ARGS args so far */ printf("Program error in %s\n", __func__); } for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) { args[i] = get_mail(phy, 1); } format = lookup_msg(index, train2d); if (format != NULL) { printf("0x%08x: ", index); printf(format, args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9], args[10], args[11], args[12], args[13], args[14], args[15], args[16], args[17], args[18], args[19], args[20], args[21], args[22], args[23], args[24], args[25], args[26], args[27], args[28], args[29], args[30], args[31]); } #endif } static int wait_fw_done(uint16_t *phy, int train2d) { uint32_t mail = 0U; while (mail == U(0x0)) { mail = get_mail(phy, 0); switch (mail) { case U(0x7): debug("%s Training completed\n", train2d ? "2D" : "1D"); break; case U(0xff): debug("%s Training failure\n", train2d ? "2D" : "1D"); break; case U(0x0): debug("End of initialization\n"); mail = 0U; break; case U(0x1): debug("End of fine write leveling\n"); mail = 0U; break; case U(0x2): debug("End of read enable training\n"); mail = 0U; break; case U(0x3): debug("End of read delay center optimization\n"); mail = 0U; break; case U(0x4): debug("End of write delay center optimization\n"); mail = 0U; break; case U(0x5): debug("End of 2D read delay/voltage center optimztn\n"); mail = 0U; break; case U(0x6): debug("End of 2D write delay/voltage center optmztn\n"); mail = 0U; break; case U(0x8): decode_stream_message(phy, train2d); mail = 0U; break; case U(0x9): debug("End of max read latency training\n"); mail = 0U; break; case U(0xa): debug("End of read dq deskew training\n"); mail = 0U; break; case U(0xc): debug("End of LRDIMM Specific training, including:\n"); debug("/tDWL, MREP, MRD and MWD\n"); mail = 0U; break; case U(0xd): debug("End of CA training\n"); mail = 0U; break; case U(0xfd): debug("End of MPR read delay center optimization\n"); mail = 0U; break; case U(0xfe): debug("End of Write leveling coarse delay\n"); mail = 0U; break; case U(0xffff): debug("Timed out\n"); break; default: mail = 0U; break; } } if (mail == U(0x7)) { return 0; } else if (mail == U(0xff)) { return -EIO; } else if (mail == U(0xffff)) { return -ETIMEDOUT; } debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail); return -EINVAL; } static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input) { int ret = -EINVAL; int i; uint16_t *phy; for (i = 0; i < NUM_OF_DDRC; i++) { phy = phy_ptr[i]; if (phy == NULL) { continue; } debug("Applying PLL optimal settings\n"); prog_pll_ctrl2(phy, input); prog_pll_ctrl(phy, input); phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0x1); phy_io_write16(phy, t_apbonly | csr_micro_reset_addr, csr_reset_to_micro_mask | csr_stall_to_micro_mask); phy_io_write16(phy, t_apbonly | csr_micro_reset_addr, csr_stall_to_micro_mask); phy_io_write16(phy, t_apbonly | csr_micro_reset_addr, 0); ret = wait_fw_done(phy, train2d); if (ret == -ETIMEDOUT) { ERROR("Wait timed out: Firmware execution on PHY %d\n", i); } } return ret; } static inline int send_fw(uint16_t *phy, uint32_t dst, uint16_t *img, uint32_t size) { uint32_t i; if ((size % 2U) != 0U) { ERROR("Wrong image size 0x%x\n", size); return -EINVAL; } for (i = 0U; i < size / 2; i++) { phy_io_write16(phy, dst + i, *(img + i)); } return 0; } static int load_fw(uint16_t **phy_ptr, struct input *input, int train2d, void *msg, size_t len, uintptr_t phy_gen2_fw_img_buf, int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *), uint32_t warm_boot_flag) { uint32_t imem_id, dmem_id; uintptr_t image_buf; uint32_t size; int ret; int i; uint16_t *phy; switch (input->basic.dimm_type) { case UDIMM: case SODIMM: case NODIMM: imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID : DDR_IMEM_UDIMM_1D_IMAGE_ID; dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID : DDR_DMEM_UDIMM_1D_IMAGE_ID; break; case RDIMM: imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID : DDR_IMEM_RDIMM_1D_IMAGE_ID; dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID : DDR_DMEM_RDIMM_1D_IMAGE_ID; break; default: ERROR("Unsupported DIMM type\n"); return -EINVAL; } size = PHY_GEN2_MAX_IMAGE_SIZE; image_buf = (uintptr_t)phy_gen2_fw_img_buf; ret = mmap_add_dynamic_region(phy_gen2_fw_img_buf, phy_gen2_fw_img_buf, PHY_GEN2_MAX_IMAGE_SIZE, MT_MEMORY | MT_RW | MT_SECURE); if (ret != 0) { ERROR("Failed to add dynamic memory region.\n"); return ret; } ret = img_loadr(imem_id, &image_buf, &size); if (ret != 0) { ERROR("Failed to load %d firmware.\n", imem_id); return ret; } debug("Loaded Imaged id %d of size %x at address %lx\n", imem_id, size, image_buf); for (i = 0; i < NUM_OF_DDRC; i++) { phy = phy_ptr[i]; if (phy == NULL) { continue; } if (warm_boot_flag != DDR_WARM_BOOT) { if (train2d == 0) { phy_io_write16(phy, t_master | csr_mem_reset_l_addr, csr_protect_mem_reset_mask); } } /* Enable access to the internal CSRs */ phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0); ret = send_fw(phy, PHY_GEN2_IMEM_ADDR, (uint16_t *)image_buf, size); if (ret != 0) { return ret; } } size = PHY_GEN2_MAX_IMAGE_SIZE; image_buf = (uintptr_t)phy_gen2_fw_img_buf; ret = img_loadr(dmem_id, &image_buf, &size); if (ret != 0) { ERROR("Failed to load %d firmware.\n", dmem_id); return ret; } debug("Loaded Imaged id %d of size %x at address %lx\n", dmem_id, size, image_buf); image_buf += len; size -= len; for (i = 0; i < NUM_OF_DDRC; i++) { phy = phy_ptr[i]; if (phy == NULL) { continue; } ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len); if (ret != 0) { return ret; } ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2, (uint16_t *)image_buf, size); if (ret != 0) { return ret; } } return ret; } static void parse_odt(const unsigned int val, const int read, const int i, const unsigned int cs_d0, const unsigned int cs_d1, unsigned int *odt) { int shift = read ? 4 : 0; int j; if (i < 0 || i > 3) { printf("Error: invalid chip-select value\n"); } switch (val) { case DDR_ODT_CS: odt[i] |= (1 << i) << shift; break; case DDR_ODT_ALL_OTHER_CS: for (j = 0; j < DDRC_NUM_CS; j++) { if (i == j) { continue; } if (((cs_d0 | cs_d1) & (1 << j)) == 0) { continue; } odt[j] |= (1 << i) << shift; } break; case DDR_ODT_CS_AND_OTHER_DIMM: odt[i] |= (1 << i) << 4; /* fallthrough */ case DDR_ODT_OTHER_DIMM: for (j = 0; j < DDRC_NUM_CS; j++) { if ((((cs_d0 & (1 << i)) != 0) && ((cs_d1 & (1 << j)) != 0)) || (((cs_d1 & (1 << i)) != 0) && ((cs_d0 & (1 << j)) != 0))) { odt[j] |= (1 << i) << shift; } } break; case DDR_ODT_ALL: for (j = 0; j < DDRC_NUM_CS; j++) { if (((cs_d0 | cs_d1) & (1 << j)) == 0) { continue; } odt[j] |= (1 << i) << shift; } break; case DDR_ODT_SAME_DIMM: for (j = 0; j < DDRC_NUM_CS; j++) { if ((((cs_d0 & (1 << i)) != 0) && ((cs_d0 & (1 << j)) != 0)) || (((cs_d1 & (1 << i)) != 0) && ((cs_d1 & (1 << j)) != 0))) { odt[j] |= (1 << i) << shift; } } break; case DDR_ODT_OTHER_CS_ONSAMEDIMM: for (j = 0; j < DDRC_NUM_CS; j++) { if (i == j) { continue; } if ((((cs_d0 & (1 << i)) != 0) && ((cs_d0 & (1 << j)) != 0)) || (((cs_d1 & (1 << i)) != 0) && ((cs_d1 & (1 << j)) != 0))) { odt[j] |= (1 << i) << shift; } } break; case DDR_ODT_NEVER: break; default: break; } } #ifdef DEBUG_DDR_INPUT_CONFIG char *dram_types_str[] = { "DDR4", "DDR3", "LDDDR4", "LPDDR3", "LPDDR2", "DDR5" }; char *dimm_types_str[] = { "UDIMM", "SODIMM", "RDIMM", "LRDIMM", "NODIMM", }; static void print_jason_format(struct input *input, struct ddr4u1d *msg_1d, struct ddr4u2d *msg_2d) { printf("\n{"); printf("\n \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]); printf("\n \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]); printf("\n \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver); printf("\n \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte); printf("\n \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0); printf("\n \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib); printf("\n \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0); printf("\n \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates); printf("\n \"frequency\": \"%d\",", input->basic.frequency); printf("\n \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio); printf("\n \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio); printf("\n \"dfi1_exists\": \"0x%04x\",", (unsigned int)input->basic.dfi1exists); printf("\n \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width); printf("\n \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap); printf("\n \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val); printf("\n \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq); printf("\n \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq); printf("\n \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac); printf("\n \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac); printf("\n \"odt_impedance\": \"%d\",", input->adv.odtimpedance); printf("\n \"tx_impedance\": \"%d\",", input->adv.tx_impedance); printf("\n \"atx_impedance\": \"%d\",", input->adv.atx_impedance); printf("\n \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en); printf("\n \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp); printf("\n \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level); printf("\n \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass); printf("\n \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval); printf("\n \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once); printf("\n \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri); printf("\n \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming); printf("\n \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length); printf("\n \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length); printf("\n \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc); printf("\n \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00); printf("\n \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl); printf("\n \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present); printf("\n \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref); printf("\n \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin); printf("\n \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror); printf("\n \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f)); printf("\n \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f)); printf("\n \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f)); printf("\n \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f)); printf("\n \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0)); printf("\n \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0)); printf("\n \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0)); printf("\n \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0)); printf("\n \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc); printf("\n \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result); printf("\n \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl); printf("\n \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0); printf("\n \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1); printf("\n \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2); printf("\n \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3); printf("\n \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4); printf("\n \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5); printf("\n \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6); printf("\n \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l); printf("\n \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l); printf("\n \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl); printf("\n \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0); printf("\n \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1); printf("\n \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2); printf("\n \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3); printf("\n \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4); printf("\n \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5); printf("\n \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6); printf("\n \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7); printf("\n}"); printf("\n"); } #endif int compute_ddr_phy(struct ddr_info *priv) { const unsigned long clk = priv->clk; const struct memctl_opt *popts = &priv->opt; const struct ddr_conf *conf = &priv->conf; const struct dimm_params *dimm_param = &priv->dimm; struct ddr_cfg_regs *regs = &priv->ddr_reg; int ret; static struct input input; static struct ddr4u1d msg_1d; static struct ddr4u2d msg_2d; unsigned int i; unsigned int odt_rd, odt_wr; __unused const soc_info_t *soc_info; #ifdef NXP_APPLY_MAX_CDD unsigned int tcfg0, tcfg4, rank; #endif if (dimm_param == NULL) { ERROR("Empty DIMM parameters.\n"); return -EINVAL; } zeromem(&input, sizeof(input)); zeromem(&msg_1d, sizeof(msg_1d)); zeromem(&msg_2d, sizeof(msg_2d)); input.basic.dram_type = DDR4; /* FIXME: Add condition for LRDIMM */ input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM; input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 + dimm_param->ec_sdram_width / 8; input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte; input.basic.num_rank_dfi0 = dimm_param->n_ranks; input.basic.dram_data_width = dimm_param->device_width; input.basic.hard_macro_ver = 0xa; input.basic.num_pstates = 1; input.basic.dfi_freq_ratio = 1; input.basic.num_anib = 0xc; input.basic.train2d = popts->skip2d ? 0 : 1; input.basic.frequency = (int) (clk / 2000000ul); debug("frequency = %dMHz\n", input.basic.frequency); input.cs_d0 = conf->cs_on_dimm[0]; #if DDRC_NUM_DIMM > 1 input.cs_d1 = conf->cs_on_dimm[1]; #endif input.mirror = dimm_param->mirrored_dimm; input.mr[0] = regs->sdram_mode[0] & U(0xffff); input.mr[1] = regs->sdram_mode[0] >> 16U; input.mr[2] = regs->sdram_mode[1] >> 16U; input.mr[3] = regs->sdram_mode[1] & U(0xffff); input.mr[4] = regs->sdram_mode[8] >> 16U; input.mr[5] = regs->sdram_mode[8] & U(0xffff); input.mr[6] = regs->sdram_mode[9] >> 16U; input.vref = popts->vref_phy; debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U); for (i = 0U; i < DDRC_NUM_CS; i++) { if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) { continue; } odt_rd = (regs->cs[i].config >> 20U) & U(0x7); odt_wr = (regs->cs[i].config >> 16U) & U(0x7); parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1, input.odt); parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1, input.odt); } /* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */ if (dimm_param->rdimm != 0U) { regs->sdram_cfg[0] &= ~(1 << 28U); regs->sdram_cfg[1] &= ~(1 << 2U); input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf); input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf); input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf); input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf); input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf); input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf); input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf); input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf); input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf); input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf); input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf); input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf); input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf); input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf); input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf); input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf); input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff); } input.adv.odtimpedance = popts->odt ? popts->odt : 60; input.adv.tx_impedance = popts->phy_tx_impedance ? popts->phy_tx_impedance : 28; input.adv.atx_impedance = popts->phy_atx_impedance ? popts->phy_atx_impedance : 30; debug("Initializing input adv data structure\n"); phy_gen2_init_input(&input); debug("Initializing message block\n"); ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input); if (ret != 0) { ERROR("Init msg failed (error code %d)\n", ret); return ret; } ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d); if (ret != 0) { ERROR("Init PHY failed (error code %d)\n", ret); return ret; } #ifdef NXP_WARM_BOOT debug("Warm boot flag value %0x\n", priv->warm_boot_flag); if (priv->warm_boot_flag == DDR_WARM_BOOT) { debug("Restoring the Phy training data\n"); // Restore the training data ret = restore_phy_training_values(priv->phy, PHY_TRAINING_REGS_ON_FLASH, priv->num_ctlrs, input.basic.train2d); if (ret != 0) { ERROR("Restoring of training data failed %d\n", ret); return ret; } } else { #endif debug("Load 1D firmware\n"); ret = load_fw(priv->phy, &input, 0, &msg_1d, sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf, priv->img_loadr, priv->warm_boot_flag); if (ret != 0) { ERROR("Loading firmware failed (error code %d)\n", ret); return ret; } debug("Execute firmware\n"); ret = g_exec_fw(priv->phy, 0, &input); if (ret != 0) { ERROR("Execution FW failed (error code %d)\n", ret); } #ifdef NXP_APPLY_MAX_CDD soc_info = get_soc_info(); if (soc_info->svr_reg.bf.maj_ver == 2) { tcfg0 = regs->timing_cfg[0]; tcfg4 = regs->timing_cfg[4]; rank = findrank(conf->cs_in_use); get_cdd_val(priv->phy, rank, input.basic.frequency, &tcfg0, &tcfg4); regs->timing_cfg[0] = tcfg0; regs->timing_cfg[4] = tcfg4; } #endif if ((ret == 0) && (input.basic.train2d != 0)) { /* 2D training starts here */ debug("Load 2D firmware\n"); ret = load_fw(priv->phy, &input, 1, &msg_2d, sizeof(struct ddr4u2d), priv->phy_gen2_fw_img_buf, priv->img_loadr, priv->warm_boot_flag); if (ret != 0) { ERROR("Loading fw failed (err code %d)\n", ret); } else { debug("Execute 2D firmware\n"); ret = g_exec_fw(priv->phy, 1, &input); if (ret != 0) { ERROR("Execution FW failed (err %d)\n", ret); } } } #ifdef NXP_WARM_BOOT if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED && ret == 0) { debug("save the phy training data\n"); //Save training data TBD ret = save_phy_training_values(priv->phy, PHY_TRAINING_REGS_ON_FLASH, priv->num_ctlrs, input.basic.train2d); if (ret != 0) { ERROR("Saving training data failed."); ERROR("Warm boot will fail. Error=%d.\n", ret); } } } /* else */ #endif if (ret == 0) { debug("Load PIE\n"); i_load_pie(priv->phy, &input, &msg_1d); NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n", input.basic.dimm_type == RDIMM ? "RDIMM" : input.basic.dimm_type == LRDIMM ? "LRDIMM" : "UDIMM", dimm_param->n_ranks, dimm_param->primary_sdram_width, dimm_param->device_width); } #ifdef DEBUG_DDR_INPUT_CONFIG print_jason_format(&input, &msg_1d, &msg_2d); #endif return ret; }