/* * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern uint64_t tegra_bl31_phys_base; extern uint64_t tegra_sec_entry_point; /* * The following platform setup functions are weakly defined. They * provide typical implementations that will be overridden by a SoC. */ #pragma weak tegra_soc_pwr_domain_suspend #pragma weak tegra_soc_pwr_domain_on #pragma weak tegra_soc_pwr_domain_off #pragma weak tegra_soc_pwr_domain_on_finish #pragma weak tegra_soc_prepare_system_reset int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state) { return PSCI_E_NOT_SUPPORTED; } int tegra_soc_pwr_domain_on(u_register_t mpidr) { return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state) { return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state) { return PSCI_E_SUCCESS; } int tegra_soc_prepare_system_reset(void) { return PSCI_E_SUCCESS; } /******************************************************************************* * This handler is called by the PSCI implementation during the `SYSTEM_SUSPEND` * call to get the `power_state` parameter. This allows the platform to encode * the appropriate State-ID field within the `power_state` parameter which can * be utilized in `pwr_domain_suspend()` to suspend to system affinity level. ******************************************************************************/ void tegra_get_sys_suspend_power_state(psci_power_state_t *req_state) { /* lower affinities use PLAT_MAX_OFF_STATE */ for (int i = MPIDR_AFFLVL0; i < PLAT_MAX_PWR_LVL; i++) req_state->pwr_domain_state[i] = PLAT_MAX_OFF_STATE; /* max affinity uses system suspend state id */ req_state->pwr_domain_state[PLAT_MAX_PWR_LVL] = PSTATE_ID_SOC_POWERDN; } /******************************************************************************* * Handler called when an affinity instance is about to enter standby. ******************************************************************************/ void tegra_cpu_standby(plat_local_state_t cpu_state) { /* * Enter standby state * dsb is good practice before using wfi to enter low power states */ dsb(); wfi(); } /******************************************************************************* * Handler called when an affinity instance is about to be turned on. The * level and mpidr determine the affinity instance. ******************************************************************************/ int tegra_pwr_domain_on(u_register_t mpidr) { return tegra_soc_pwr_domain_on(mpidr); } /******************************************************************************* * Handler called when a power domain is about to be turned off. The * target_state encodes the power state that each level should transition to. ******************************************************************************/ void tegra_pwr_domain_off(const psci_power_state_t *target_state) { tegra_soc_pwr_domain_off(target_state); } /******************************************************************************* * Handler called when called when a power domain is about to be suspended. The * target_state encodes the power state that each level should transition to. ******************************************************************************/ void tegra_pwr_domain_suspend(const psci_power_state_t *target_state) { tegra_soc_pwr_domain_suspend(target_state); /* disable GICC */ tegra_gic_cpuif_deactivate(); } /******************************************************************************* * Handler called when a power domain has just been powered on after * being turned off earlier. The target_state encodes the low power state that * each level has woken up from. ******************************************************************************/ void tegra_pwr_domain_on_finish(const psci_power_state_t *target_state) { plat_params_from_bl2_t *plat_params; /* * Initialize the GIC cpu and distributor interfaces */ tegra_gic_setup(); /* * Check if we are exiting from deep sleep. */ if (target_state->pwr_domain_state[PLAT_MAX_PWR_LVL] == PSTATE_ID_SOC_POWERDN) { /* * Lock scratch registers which hold the CPU vectors. */ tegra_pmc_lock_cpu_vectors(); /* * SMMU configuration. */ tegra_memctrl_setup(); /* * Security configuration to allow DRAM/device access. */ plat_params = bl31_get_plat_params(); tegra_memctrl_tzdram_setup(tegra_bl31_phys_base, plat_params->tzdram_size); } /* * Reset hardware settings. */ tegra_soc_pwr_domain_on_finish(target_state); } /******************************************************************************* * Handler called when a power domain has just been powered on after * having been suspended earlier. The target_state encodes the low power state * that each level has woken up from. ******************************************************************************/ void tegra_pwr_domain_suspend_finish(const psci_power_state_t *target_state) { tegra_pwr_domain_on_finish(target_state); } /******************************************************************************* * Handler called when the system wants to be powered off ******************************************************************************/ __dead2 void tegra_system_off(void) { ERROR("Tegra System Off: operation not handled.\n"); panic(); } /******************************************************************************* * Handler called when the system wants to be restarted. ******************************************************************************/ __dead2 void tegra_system_reset(void) { /* per-SoC system reset handler */ tegra_soc_prepare_system_reset(); /* * Program the PMC in order to restart the system. */ tegra_pmc_system_reset(); } /******************************************************************************* * Handler called to check the validity of the power state parameter. ******************************************************************************/ int32_t tegra_validate_power_state(unsigned int power_state, psci_power_state_t *req_state) { int pwr_lvl = psci_get_pstate_pwrlvl(power_state); assert(req_state); if (pwr_lvl > PLAT_MAX_PWR_LVL) return PSCI_E_INVALID_PARAMS; return tegra_soc_validate_power_state(power_state, req_state); } /******************************************************************************* * Platform handler called to check the validity of the non secure entrypoint. ******************************************************************************/ int tegra_validate_ns_entrypoint(uintptr_t entrypoint) { /* * Check if the non secure entrypoint lies within the non * secure DRAM. */ if ((entrypoint >= TEGRA_DRAM_BASE) && (entrypoint <= TEGRA_DRAM_END)) return PSCI_E_SUCCESS; return PSCI_E_INVALID_ADDRESS; } /******************************************************************************* * Export the platform handlers to enable psci to invoke them ******************************************************************************/ static const plat_psci_ops_t tegra_plat_psci_ops = { .cpu_standby = tegra_cpu_standby, .pwr_domain_on = tegra_pwr_domain_on, .pwr_domain_off = tegra_pwr_domain_off, .pwr_domain_suspend = tegra_pwr_domain_suspend, .pwr_domain_on_finish = tegra_pwr_domain_on_finish, .pwr_domain_suspend_finish = tegra_pwr_domain_suspend_finish, .system_off = tegra_system_off, .system_reset = tegra_system_reset, .validate_power_state = tegra_validate_power_state, .validate_ns_entrypoint = tegra_validate_ns_entrypoint, .get_sys_suspend_power_state = tegra_get_sys_suspend_power_state, }; /******************************************************************************* * Export the platform specific power ops and initialize Power Controller ******************************************************************************/ int plat_setup_psci_ops(uintptr_t sec_entrypoint, const plat_psci_ops_t **psci_ops) { psci_power_state_t target_state = { { PSCI_LOCAL_STATE_RUN } }; /* * Flush entrypoint variable to PoC since it will be * accessed after a reset with the caches turned off. */ tegra_sec_entry_point = sec_entrypoint; flush_dcache_range((uint64_t)&tegra_sec_entry_point, sizeof(uint64_t)); /* * Reset hardware settings. */ tegra_soc_pwr_domain_on_finish(&target_state); /* * Initialize PSCI ops struct */ *psci_ops = &tegra_plat_psci_ops; return 0; }