arm-trusted-firmware/plat/nxp/soc-ls1046a/soc.c

396 lines
9.3 KiB
C

/*
* Copyright 2018-2022 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch.h>
#include <caam.h>
#include <cassert.h>
#include <cci.h>
#include <common/debug.h>
#include <dcfg.h>
#ifdef I2C_INIT
#include <i2c.h>
#endif
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <ls_interconnect.h>
#ifdef POLICY_FUSE_PROVISION
#include <nxp_gpio.h>
#endif
#if TRUSTED_BOARD_BOOT
#include <nxp_smmu.h>
#endif
#include <nxp_timer.h>
#include <plat_console.h>
#include <plat_gic.h>
#include <plat_tzc400.h>
#include <scfg.h>
#if defined(NXP_SFP_ENABLED)
#include <sfp.h>
#endif
#include <errata.h>
#include <ns_access.h>
#ifdef CONFIG_OCRAM_ECC_EN
#include <ocram.h>
#endif
#include <plat_common.h>
#include <platform_def.h>
#include <soc.h>
static dcfg_init_info_t dcfg_init_data = {
.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
};
/* Function to return the SoC SYS CLK */
static unsigned int get_sys_clk(void)
{
return NXP_SYSCLK_FREQ;
}
/*
* Function returns the base counter frequency
* after reading the first entry at CNTFID0 (0x20 offset).
*
* Function is used by:
* 1. ARM common code for PSCI management.
* 2. ARM Generic Timer init.
*
*/
unsigned int plat_get_syscnt_freq2(void)
{
unsigned int counter_base_frequency;
counter_base_frequency = get_sys_clk() / 4;
return counter_base_frequency;
}
#ifdef IMAGE_BL2
/* Functions for BL2 */
static struct soc_type soc_list[] = {
SOC_ENTRY(LS1046A, LS1046A, 1, 4),
SOC_ENTRY(LS1046AE, LS1046AE, 1, 4),
SOC_ENTRY(LS1026A, LS1026A, 1, 2),
SOC_ENTRY(LS1026AE, LS1026AE, 1, 2),
};
#ifdef POLICY_FUSE_PROVISION
static gpio_init_info_t gpio_init_data = {
.gpio1_base_addr = NXP_GPIO1_ADDR,
.gpio2_base_addr = NXP_GPIO2_ADDR,
.gpio3_base_addr = NXP_GPIO3_ADDR,
.gpio4_base_addr = NXP_GPIO4_ADDR,
};
#endif
/*
* Function to set the base counter frequency at
* the first entry of the Frequency Mode Table,
* at CNTFID0 (0x20 offset).
*
* Set the value of the pirmary core register cntfrq_el0.
*/
static void set_base_freq_CNTFID0(void)
{
/*
* Below register specifies the base frequency of the system counter.
* As per NXP Board Manuals:
* The system counter always works with SYS_REF_CLK/4 frequency clock.
*/
unsigned int counter_base_frequency = get_sys_clk() / 4;
/* Setting the frequency in the Frequency modes table.
*
* Note: The value for ls1046ardb board at this offset
* is not RW as stated. This offset have the
* fixed value of 100000400 Hz.
*
* The below code line has no effect.
* Keeping it for other platforms where it has effect.
*/
mmio_write_32(NXP_TIMER_ADDR + CNTFID_OFF, counter_base_frequency);
write_cntfrq_el0(counter_base_frequency);
}
void soc_preload_setup(void)
{
}
/*
* This function implements soc specific erratas
* This is called before DDR is initialized or MMU is enabled
*/
void soc_early_init(void)
{
uint8_t num_clusters, cores_per_cluster;
dram_regions_info_t *dram_regions_info = get_dram_regions_info();
#ifdef CONFIG_OCRAM_ECC_EN
ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
#endif
dcfg_init(&dcfg_init_data);
#ifdef POLICY_FUSE_PROVISION
gpio_init(&gpio_init_data);
sec_init(NXP_CAAM_ADDR);
#endif
#if LOG_LEVEL > 0
/* Initialize the console to provide early debug support */
plat_console_init(NXP_CONSOLE_ADDR,
NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
set_base_freq_CNTFID0();
/* Enable snooping on SEC read and write transactions */
scfg_setbits32((void *)(NXP_SCFG_ADDR + SCFG_SNPCNFGCR_OFFSET),
SCFG_SNPCNFGCR_SECRDSNP | SCFG_SNPCNFGCR_SECWRSNP);
/*
* Initialize Interconnect for this cluster during cold boot.
* No need for locks as no other CPU is active.
*/
cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
/*
* Enable Interconnect coherency for the primary CPU's cluster.
*/
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
plat_ls_interconnect_enter_coherency(num_clusters);
#if TRUSTED_BOARD_BOOT
uint32_t mode;
sfp_init(NXP_SFP_ADDR);
/*
* For secure boot disable SMMU.
* Later when platform security policy comes in picture,
* this might get modified based on the policy
*/
if (check_boot_mode_secure(&mode) == true) {
bypass_smmu(NXP_SMMU_ADDR);
}
/*
* For Mbedtls currently crypto is not supported via CAAM
* enable it when that support is there. In tbbr.mk
* the CAAM_INTEG is set as 0.
*/
#ifndef MBEDTLS_X509
/* Initialize the crypto accelerator if enabled */
if (is_sec_enabled() == false) {
INFO("SEC is disabled.\n");
} else {
sec_init(NXP_CAAM_ADDR);
}
#endif
#elif defined(POLICY_FUSE_PROVISION)
gpio_init(&gpio_init_data);
sfp_init(NXP_SFP_ADDR);
sec_init(NXP_CAAM_ADDR);
#endif
soc_errata();
/* Initialize system level generic timer for Layerscape Socs. */
delay_timer_init(NXP_TIMER_ADDR);
#ifdef DDR_INIT
i2c_init(NXP_I2C_ADDR);
dram_regions_info->total_dram_size = init_ddr();
#endif
}
void soc_bl2_prepare_exit(void)
{
#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
set_sfp_wr_disable();
#endif
}
/* This function returns the boot device based on RCW_SRC */
enum boot_device get_boot_dev(void)
{
enum boot_device src = BOOT_DEVICE_NONE;
uint32_t porsr1;
uint32_t rcw_src, val;
porsr1 = read_reg_porsr1();
rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
val = rcw_src & RCW_SRC_NAND_MASK;
if (val == RCW_SRC_NAND_VAL) {
val = rcw_src & NAND_RESERVED_MASK;
if ((val != NAND_RESERVED_1) && (val != NAND_RESERVED_2)) {
src = BOOT_DEVICE_IFC_NAND;
INFO("RCW BOOT SRC is IFC NAND\n");
}
} else {
/* RCW SRC NOR */
val = rcw_src & RCW_SRC_NOR_MASK;
if (val == NOR_8B_VAL || val == NOR_16B_VAL) {
src = BOOT_DEVICE_IFC_NOR;
INFO("RCW BOOT SRC is IFC NOR\n");
} else {
switch (rcw_src) {
case QSPI_VAL1:
case QSPI_VAL2:
src = BOOT_DEVICE_QSPI;
INFO("RCW BOOT SRC is QSPI\n");
break;
case SD_VAL:
src = BOOT_DEVICE_EMMC;
INFO("RCW BOOT SRC is SD/EMMC\n");
break;
default:
src = BOOT_DEVICE_NONE;
}
}
}
return src;
}
/* This function sets up access permissions on memory regions */
void soc_mem_access(void)
{
dram_regions_info_t *info_dram_regions = get_dram_regions_info();
struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
unsigned int dram_idx, index = 0U;
for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions;
dram_idx++) {
if (info_dram_regions->region[dram_idx].size == 0) {
ERROR("DDR init failure, or");
ERROR("DRAM regions not populated correctly.\n");
break;
}
index = populate_tzc400_reg_list(tzc400_reg_list,
dram_idx, index,
info_dram_regions->region[dram_idx].addr,
info_dram_regions->region[dram_idx].size,
NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
}
mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list);
}
#else /* IMAGE_BL2 */
/* Functions for BL31 */
const unsigned char _power_domain_tree_desc[] = {1, 1, 4};
CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
assert_invalid_ls1046_cluster_count);
/* This function returns the SoC topology */
const unsigned char *plat_get_power_domain_tree_desc(void)
{
return _power_domain_tree_desc;
}
/*
* This function returns the core count within the cluster corresponding to
* `mpidr`.
*/
unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
{
return CORES_PER_CLUSTER;
}
void soc_early_platform_setup2(void)
{
dcfg_init(&dcfg_init_data);
/* Initialize system level generic timer for SoCs */
delay_timer_init(NXP_TIMER_ADDR);
#if LOG_LEVEL > 0
/* Initialize the console to provide early debug support */
plat_console_init(NXP_CONSOLE_ADDR,
NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
}
void soc_platform_setup(void)
{
static uint32_t target_mask_array[PLATFORM_CORE_COUNT];
/*
* On a GICv2 system, the Group 1 secure interrupts are treated
* as Group 0 interrupts.
*/
static interrupt_prop_t ls_interrupt_props[] = {
PLAT_LS_G1S_IRQ_PROPS(GICV2_INTR_GROUP0),
PLAT_LS_G0_IRQ_PROPS(GICV2_INTR_GROUP0)
};
plat_ls_gic_driver_init(
#if (TEST_BL31)
/* Defect in simulator - GIC base addresses (4Kb aligned) */
NXP_GICD_4K_ADDR,
NXP_GICC_4K_ADDR,
#else
NXP_GICD_64K_ADDR,
NXP_GICC_64K_ADDR,
#endif
PLATFORM_CORE_COUNT,
ls_interrupt_props,
ARRAY_SIZE(ls_interrupt_props),
target_mask_array);
plat_ls_gic_init();
enable_init_timer();
}
/* This function initializes the soc from the BL31 module */
void soc_init(void)
{
/* low-level init of the soc */
soc_init_lowlevel();
_init_global_data();
soc_init_percpu();
_initialize_psci();
/*
* Initialize the interconnect during cold boot.
* No need for locks as no other CPU is active.
*/
cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
/*
* Enable coherency in interconnect for the primary CPU's cluster.
* Earlier bootloader stages might already do this but we can't
* assume so. No harm in executing this code twice.
*/
cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
/* Init CSU to enable non-secure access to peripherals */
enable_layerscape_ns_access(ns_dev, ARRAY_SIZE(ns_dev), NXP_CSU_ADDR);
/* Initialize the crypto accelerator if enabled */
if (is_sec_enabled() == false) {
INFO("SEC is disabled.\n");
} else {
sec_init(NXP_CAAM_ADDR);
}
}
void soc_runtime_setup(void)
{
}
#endif /* IMAGE_BL2 */