arm-trusted-firmware/plat/st/common/bl2_io_storage.c

625 lines
15 KiB
C

/*
* Copyright (c) 2015-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <drivers/fwu/fwu.h>
#include <drivers/fwu/fwu_metadata.h>
#include <drivers/io/io_block.h>
#include <drivers/io/io_driver.h>
#include <drivers/io/io_fip.h>
#include <drivers/io/io_memmap.h>
#include <drivers/io/io_mtd.h>
#include <drivers/io/io_storage.h>
#include <drivers/mmc.h>
#include <drivers/partition/efi.h>
#include <drivers/partition/partition.h>
#include <drivers/raw_nand.h>
#include <drivers/spi_nand.h>
#include <drivers/spi_nor.h>
#include <drivers/st/io_mmc.h>
#include <drivers/st/stm32_fmc2_nand.h>
#include <drivers/st/stm32_qspi.h>
#include <drivers/st/stm32_sdmmc2.h>
#include <drivers/usb_device.h>
#include <lib/fconf/fconf.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
#include <tools_share/firmware_image_package.h>
#include <platform_def.h>
#include <stm32cubeprogrammer.h>
#include <stm32mp_fconf_getter.h>
#include <stm32mp_io_storage.h>
#include <usb_dfu.h>
/* IO devices */
uintptr_t fip_dev_handle;
uintptr_t storage_dev_handle;
static const io_dev_connector_t *fip_dev_con;
#if STM32MP_SDMMC || STM32MP_EMMC
static struct mmc_device_info mmc_info;
static uint32_t block_buffer[MMC_BLOCK_SIZE] __aligned(MMC_BLOCK_SIZE);
static io_block_dev_spec_t mmc_block_dev_spec = {
/* It's used as temp buffer in block driver */
.buffer = {
.offset = (size_t)&block_buffer,
.length = MMC_BLOCK_SIZE,
},
.ops = {
.read = mmc_read_blocks,
.write = NULL,
},
.block_size = MMC_BLOCK_SIZE,
};
static const io_dev_connector_t *mmc_dev_con;
#endif /* STM32MP_SDMMC || STM32MP_EMMC */
#if STM32MP_SPI_NOR
static io_mtd_dev_spec_t spi_nor_dev_spec = {
.ops = {
.init = spi_nor_init,
.read = spi_nor_read,
},
};
#endif
#if STM32MP_RAW_NAND
static io_mtd_dev_spec_t nand_dev_spec = {
.ops = {
.init = nand_raw_init,
.read = nand_read,
.seek = nand_seek_bb
},
};
static const io_dev_connector_t *nand_dev_con;
#endif
#if STM32MP_SPI_NAND
static io_mtd_dev_spec_t spi_nand_dev_spec = {
.ops = {
.init = spi_nand_init,
.read = nand_read,
.seek = nand_seek_bb
},
};
#endif
#if STM32MP_SPI_NAND || STM32MP_SPI_NOR
static const io_dev_connector_t *spi_dev_con;
#endif
#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
static const io_dev_connector_t *memmap_dev_con;
#endif
io_block_spec_t image_block_spec = {
.offset = 0U,
.length = 0U,
};
int open_fip(const uintptr_t spec)
{
return io_dev_init(fip_dev_handle, (uintptr_t)FIP_IMAGE_ID);
}
int open_storage(const uintptr_t spec)
{
return io_dev_init(storage_dev_handle, 0);
}
static void print_boot_device(boot_api_context_t *boot_context)
{
switch (boot_context->boot_interface_selected) {
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_SD:
INFO("Using SDMMC\n");
break;
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_EMMC:
INFO("Using EMMC\n");
break;
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NOR_QSPI:
INFO("Using QSPI NOR\n");
break;
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_FMC:
INFO("Using FMC NAND\n");
break;
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_QSPI:
INFO("Using SPI NAND\n");
break;
case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART:
INFO("Using UART\n");
break;
case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB:
INFO("Using USB\n");
break;
default:
ERROR("Boot interface %u not found\n",
boot_context->boot_interface_selected);
panic();
break;
}
if (boot_context->boot_interface_instance != 0U) {
INFO(" Instance %d\n", boot_context->boot_interface_instance);
}
}
#if STM32MP_SDMMC || STM32MP_EMMC
static void boot_mmc(enum mmc_device_type mmc_dev_type,
uint16_t boot_interface_instance)
{
int io_result __unused;
struct stm32_sdmmc2_params params;
zeromem(&params, sizeof(struct stm32_sdmmc2_params));
mmc_info.mmc_dev_type = mmc_dev_type;
switch (boot_interface_instance) {
case 1:
params.reg_base = STM32MP_SDMMC1_BASE;
break;
case 2:
params.reg_base = STM32MP_SDMMC2_BASE;
break;
case 3:
params.reg_base = STM32MP_SDMMC3_BASE;
break;
default:
WARN("SDMMC instance not found, using default\n");
if (mmc_dev_type == MMC_IS_SD) {
params.reg_base = STM32MP_SDMMC1_BASE;
} else {
params.reg_base = STM32MP_SDMMC2_BASE;
}
break;
}
params.device_info = &mmc_info;
if (stm32_sdmmc2_mmc_init(&params) != 0) {
ERROR("SDMMC%u init failed\n", boot_interface_instance);
panic();
}
/* Open MMC as a block device to read GPT table */
io_result = register_io_dev_block(&mmc_dev_con);
if (io_result != 0) {
panic();
}
io_result = io_dev_open(mmc_dev_con, (uintptr_t)&mmc_block_dev_spec,
&storage_dev_handle);
assert(io_result == 0);
}
#endif /* STM32MP_SDMMC || STM32MP_EMMC */
#if STM32MP_SPI_NOR
static void boot_spi_nor(boot_api_context_t *boot_context)
{
int io_result __unused;
io_result = stm32_qspi_init();
assert(io_result == 0);
io_result = register_io_dev_mtd(&spi_dev_con);
assert(io_result == 0);
/* Open connections to device */
io_result = io_dev_open(spi_dev_con,
(uintptr_t)&spi_nor_dev_spec,
&storage_dev_handle);
assert(io_result == 0);
}
#endif /* STM32MP_SPI_NOR */
#if STM32MP_RAW_NAND
static void boot_fmc2_nand(boot_api_context_t *boot_context)
{
int io_result __unused;
io_result = stm32_fmc2_init();
assert(io_result == 0);
/* Register the IO device on this platform */
io_result = register_io_dev_mtd(&nand_dev_con);
assert(io_result == 0);
/* Open connections to device */
io_result = io_dev_open(nand_dev_con, (uintptr_t)&nand_dev_spec,
&storage_dev_handle);
assert(io_result == 0);
}
#endif /* STM32MP_RAW_NAND */
#if STM32MP_SPI_NAND
static void boot_spi_nand(boot_api_context_t *boot_context)
{
int io_result __unused;
io_result = stm32_qspi_init();
assert(io_result == 0);
io_result = register_io_dev_mtd(&spi_dev_con);
assert(io_result == 0);
/* Open connections to device */
io_result = io_dev_open(spi_dev_con,
(uintptr_t)&spi_nand_dev_spec,
&storage_dev_handle);
assert(io_result == 0);
}
#endif /* STM32MP_SPI_NAND */
#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
static void mmap_io_setup(void)
{
int io_result __unused;
io_result = register_io_dev_memmap(&memmap_dev_con);
assert(io_result == 0);
io_result = io_dev_open(memmap_dev_con, (uintptr_t)NULL,
&storage_dev_handle);
assert(io_result == 0);
}
#if STM32MP_UART_PROGRAMMER
static void stm32cubeprogrammer_uart(void)
{
int ret __unused;
boot_api_context_t *boot_context =
(boot_api_context_t *)stm32mp_get_boot_ctx_address();
uintptr_t uart_base;
uart_base = get_uart_address(boot_context->boot_interface_instance);
ret = stm32cubeprog_uart_load(uart_base, DWL_BUFFER_BASE, DWL_BUFFER_SIZE);
assert(ret == 0);
}
#endif
#if STM32MP_USB_PROGRAMMER
static void stm32cubeprogrammer_usb(void)
{
int ret __unused;
struct usb_handle *pdev;
/* Init USB on platform */
pdev = usb_dfu_plat_init();
ret = stm32cubeprog_usb_load(pdev, DWL_BUFFER_BASE, DWL_BUFFER_SIZE);
assert(ret == 0);
}
#endif
#endif /* STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER */
void stm32mp_io_setup(void)
{
int io_result __unused;
boot_api_context_t *boot_context =
(boot_api_context_t *)stm32mp_get_boot_ctx_address();
print_boot_device(boot_context);
if ((boot_context->boot_partition_used_toboot == 1U) ||
(boot_context->boot_partition_used_toboot == 2U)) {
INFO("Boot used partition fsbl%u\n",
boot_context->boot_partition_used_toboot);
}
io_result = register_io_dev_fip(&fip_dev_con);
assert(io_result == 0);
io_result = io_dev_open(fip_dev_con, (uintptr_t)NULL,
&fip_dev_handle);
switch (boot_context->boot_interface_selected) {
#if STM32MP_SDMMC
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_SD:
dmbsy();
boot_mmc(MMC_IS_SD, boot_context->boot_interface_instance);
break;
#endif
#if STM32MP_EMMC
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_EMMC:
dmbsy();
boot_mmc(MMC_IS_EMMC, boot_context->boot_interface_instance);
break;
#endif
#if STM32MP_SPI_NOR
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NOR_QSPI:
dmbsy();
boot_spi_nor(boot_context);
break;
#endif
#if STM32MP_RAW_NAND
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_FMC:
dmbsy();
boot_fmc2_nand(boot_context);
break;
#endif
#if STM32MP_SPI_NAND
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_QSPI:
dmbsy();
boot_spi_nand(boot_context);
break;
#endif
#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
#if STM32MP_UART_PROGRAMMER
case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART:
#endif
#if STM32MP_USB_PROGRAMMER
case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB:
#endif
dmbsy();
mmap_io_setup();
break;
#endif
default:
ERROR("Boot interface %d not supported\n",
boot_context->boot_interface_selected);
panic();
break;
}
}
int bl2_plat_handle_pre_image_load(unsigned int image_id)
{
static bool gpt_init_done __unused;
uint16_t boot_itf = stm32mp_get_boot_itf_selected();
switch (boot_itf) {
#if STM32MP_SDMMC || STM32MP_EMMC
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_SD:
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_EMMC:
if (!gpt_init_done) {
/*
* With FWU Multi Bank feature enabled, the selection of
* the image to boot will be done by fwu_init calling the
* platform hook, plat_fwu_set_images_source.
*/
#if !PSA_FWU_SUPPORT
const partition_entry_t *entry;
partition_init(GPT_IMAGE_ID);
entry = get_partition_entry(FIP_IMAGE_NAME);
if (entry == NULL) {
ERROR("Could NOT find the %s partition!\n",
FIP_IMAGE_NAME);
return -ENOENT;
}
image_block_spec.offset = entry->start;
image_block_spec.length = entry->length;
#endif
gpt_init_done = true;
} else {
bl_mem_params_node_t *bl_mem_params = get_bl_mem_params_node(image_id);
assert(bl_mem_params != NULL);
mmc_block_dev_spec.buffer.offset = bl_mem_params->image_info.image_base;
mmc_block_dev_spec.buffer.length = bl_mem_params->image_info.image_max_size;
}
break;
#endif
#if STM32MP_RAW_NAND || STM32MP_SPI_NAND
#if STM32MP_RAW_NAND
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_FMC:
#endif
#if STM32MP_SPI_NAND
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NAND_QSPI:
#endif
image_block_spec.offset = STM32MP_NAND_FIP_OFFSET;
break;
#endif
#if STM32MP_SPI_NOR
case BOOT_API_CTX_BOOT_INTERFACE_SEL_FLASH_NOR_QSPI:
image_block_spec.offset = STM32MP_NOR_FIP_OFFSET;
break;
#endif
#if STM32MP_UART_PROGRAMMER
case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_UART:
if (image_id == FW_CONFIG_ID) {
stm32cubeprogrammer_uart();
/* FIP loaded at DWL address */
image_block_spec.offset = DWL_BUFFER_BASE;
image_block_spec.length = DWL_BUFFER_SIZE;
}
break;
#endif
#if STM32MP_USB_PROGRAMMER
case BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB:
if (image_id == FW_CONFIG_ID) {
stm32cubeprogrammer_usb();
/* FIP loaded at DWL address */
image_block_spec.offset = DWL_BUFFER_BASE;
image_block_spec.length = DWL_BUFFER_SIZE;
}
break;
#endif
default:
ERROR("FIP Not found\n");
panic();
}
return 0;
}
/*
* Return an IO device handle and specification which can be used to access
* an image. Use this to enforce platform load policy.
*/
int plat_get_image_source(unsigned int image_id, uintptr_t *dev_handle,
uintptr_t *image_spec)
{
int rc;
const struct plat_io_policy *policy;
policy = FCONF_GET_PROPERTY(stm32mp, io_policies, image_id);
rc = policy->check(policy->image_spec);
if (rc == 0) {
*image_spec = policy->image_spec;
*dev_handle = *(policy->dev_handle);
}
return rc;
}
#if (STM32MP_SDMMC || STM32MP_EMMC) && PSA_FWU_SUPPORT
/*
* In each boot in non-trial mode, we set the BKP register to
* FWU_MAX_TRIAL_REBOOT, and return the active_index from metadata.
*
* As long as the update agent didn't update the "accepted" field in metadata
* (i.e. we are in trial mode), we select the new active_index.
* To avoid infinite boot loop at trial boot we decrement a BKP register.
* If this counter is 0:
* - an unexpected TAMPER event raised (that resets the BKP registers to 0)
* - a power-off occurs before the update agent was able to update the
* "accepted' field
* - we already boot FWU_MAX_TRIAL_REBOOT times in trial mode.
* we select the previous_active_index.
*/
#define INVALID_BOOT_IDX 0xFFFFFFFF
uint32_t plat_fwu_get_boot_idx(void)
{
/*
* Select boot index and update boot counter only once per boot
* even if this function is called several times.
*/
static uint32_t boot_idx = INVALID_BOOT_IDX;
const struct fwu_metadata *data;
data = fwu_get_metadata();
if (boot_idx == INVALID_BOOT_IDX) {
boot_idx = data->active_index;
if (fwu_is_trial_run_state()) {
if (stm32_get_and_dec_fwu_trial_boot_cnt() == 0U) {
WARN("Trial FWU fails %u times\n",
FWU_MAX_TRIAL_REBOOT);
boot_idx = data->previous_active_index;
}
} else {
stm32_set_max_fwu_trial_boot_cnt();
}
}
return boot_idx;
}
static void *stm32_get_image_spec(const uuid_t *img_type_uuid)
{
unsigned int i;
for (i = 0U; i < MAX_NUMBER_IDS; i++) {
if ((guidcmp(&policies[i].img_type_guid, img_type_uuid)) == 0) {
return (void *)policies[i].image_spec;
}
}
return NULL;
}
void plat_fwu_set_images_source(const struct fwu_metadata *metadata)
{
unsigned int i;
uint32_t boot_idx;
const partition_entry_t *entry;
const uuid_t *img_type_uuid, *img_uuid;
io_block_spec_t *image_spec;
boot_idx = plat_fwu_get_boot_idx();
assert(boot_idx < NR_OF_FW_BANKS);
for (i = 0U; i < NR_OF_IMAGES_IN_FW_BANK; i++) {
img_type_uuid = &metadata->img_entry[i].img_type_uuid;
image_spec = stm32_get_image_spec(img_type_uuid);
if (image_spec == NULL) {
ERROR("Unable to get image spec for the image in the metadata\n");
panic();
}
img_uuid =
&metadata->img_entry[i].img_props[boot_idx].img_uuid;
entry = get_partition_entry_by_uuid(img_uuid);
if (entry == NULL) {
ERROR("Unable to find the partition with the uuid mentioned in metadata\n");
panic();
}
image_spec->offset = entry->start;
image_spec->length = entry->length;
}
}
static int plat_set_image_source(unsigned int image_id,
uintptr_t *handle,
uintptr_t *image_spec,
const char *part_name)
{
struct plat_io_policy *policy;
io_block_spec_t *spec;
const partition_entry_t *entry = get_partition_entry(part_name);
if (entry == NULL) {
ERROR("Unable to find the %s partition\n", part_name);
return -ENOENT;
}
policy = &policies[image_id];
spec = (io_block_spec_t *)policy->image_spec;
spec->offset = entry->start;
spec->length = entry->length;
*image_spec = policy->image_spec;
*handle = *policy->dev_handle;
return 0;
}
int plat_fwu_set_metadata_image_source(unsigned int image_id,
uintptr_t *handle,
uintptr_t *image_spec)
{
char *part_name;
assert((image_id == FWU_METADATA_IMAGE_ID) ||
(image_id == BKUP_FWU_METADATA_IMAGE_ID));
partition_init(GPT_IMAGE_ID);
if (image_id == FWU_METADATA_IMAGE_ID) {
part_name = METADATA_PART_1;
} else {
part_name = METADATA_PART_2;
}
return plat_set_image_source(image_id, handle, image_spec,
part_name);
}
#endif /* (STM32MP_SDMMC || STM32MP_EMMC) && PSA_FWU_SUPPORT */