arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_syscfg.c

412 lines
9.7 KiB
C

/*
* Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <common/debug.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stpmic1.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
#include <stm32mp_common.h>
#include <stm32mp_dt.h>
#include <stm32mp1_private.h>
/*
* SYSCFG REGISTER OFFSET (base relative)
*/
#define SYSCFG_BOOTR 0x00U
#define SYSCFG_BOOTCR 0x0CU
#if STM32MP15
#define SYSCFG_IOCTRLSETR 0x18U
#define SYSCFG_ICNR 0x1CU
#endif
#define SYSCFG_CMPCR 0x20U
#define SYSCFG_CMPENSETR 0x24U
#define SYSCFG_CMPENCLRR 0x28U
#if STM32MP13
#define SYSCFG_CMPSD1CR 0x30U
#define SYSCFG_CMPSD1ENSETR 0x34U
#define SYSCFG_CMPSD1ENCLRR 0x38U
#define SYSCFG_CMPSD2CR 0x40U
#define SYSCFG_CMPSD2ENSETR 0x44U
#define SYSCFG_CMPSD2ENCLRR 0x48U
#define SYSCFG_HSLVEN0R 0x50U
#endif
#define SYSCFG_IDC 0x380U
#define CMPCR_CMPENSETR_OFFSET 0x4U
#define CMPCR_CMPENCLRR_OFFSET 0x8U
/*
* SYSCFG_BOOTR Register
*/
#define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0)
#if STM32MP15
#define SYSCFG_BOOTR_BOOTPD_MASK GENMASK(6, 4)
#define SYSCFG_BOOTR_BOOTPD_SHIFT 4
#endif
/*
* SYSCFG_BOOTCR Register
*/
#define SYSCFG_BOOTCR_BMEN BIT(0)
/*
* SYSCFG_IOCTRLSETR Register
*/
#define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0)
#define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1)
#define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2)
#define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3)
#define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4)
/*
* SYSCFG_ICNR Register
*/
#define SYSCFG_ICNR_AXI_M9 BIT(9)
/*
* SYSCFG_CMPCR Register
*/
#define SYSCFG_CMPCR_SW_CTRL BIT(1)
#define SYSCFG_CMPCR_READY BIT(8)
#define SYSCFG_CMPCR_RANSRC GENMASK(19, 16)
#define SYSCFG_CMPCR_RANSRC_SHIFT 16
#define SYSCFG_CMPCR_RAPSRC GENMASK(23, 20)
#define SYSCFG_CMPCR_ANSRC_SHIFT 24
#define SYSCFG_CMPCR_READY_TIMEOUT_US 10000U
/*
* SYSCFG_CMPENSETR Register
*/
#define SYSCFG_CMPENSETR_MPU_EN BIT(0)
/*
* HSLV definitions
*/
#define HSLV_IDX_TPIU 0U
#define HSLV_IDX_QSPI 1U
#define HSLV_IDX_ETH1 2U
#define HSLV_IDX_ETH2 3U
#define HSLV_IDX_SDMMC1 4U
#define HSLV_IDX_SDMMC2 5U
#define HSLV_IDX_SPI1 6U
#define HSLV_IDX_SPI2 7U
#define HSLV_IDX_SPI3 8U
#define HSLV_IDX_SPI4 9U
#define HSLV_IDX_SPI5 10U
#define HSLV_IDX_LTDC 11U
#define HSLV_NB_IDX 12U
#define HSLV_KEY 0x1018U
/*
* SYSCFG_IDC Register
*/
#define SYSCFG_IDC_DEV_ID_MASK GENMASK(11, 0)
#define SYSCFG_IDC_REV_ID_MASK GENMASK(31, 16)
#define SYSCFG_IDC_REV_ID_SHIFT 16
static void enable_io_comp_cell_finish(uintptr_t cmpcr_off)
{
uint64_t start;
start = timeout_init_us(SYSCFG_CMPCR_READY_TIMEOUT_US);
while ((mmio_read_32(SYSCFG_BASE + cmpcr_off) & SYSCFG_CMPCR_READY) == 0U) {
if (timeout_elapsed(start)) {
/* Failure on IO compensation enable is not a issue: warn only. */
WARN("IO compensation cell not ready\n");
break;
}
}
mmio_clrbits_32(SYSCFG_BASE + cmpcr_off, SYSCFG_CMPCR_SW_CTRL);
}
static void disable_io_comp_cell(uintptr_t cmpcr_off)
{
uint32_t value;
if (((mmio_read_32(SYSCFG_BASE + cmpcr_off) & SYSCFG_CMPCR_READY) == 0U) ||
((mmio_read_32(SYSCFG_BASE + cmpcr_off + CMPCR_CMPENSETR_OFFSET) &
SYSCFG_CMPENSETR_MPU_EN) == 0U)) {
return;
}
value = mmio_read_32(SYSCFG_BASE + cmpcr_off) >> SYSCFG_CMPCR_ANSRC_SHIFT;
mmio_clrbits_32(SYSCFG_BASE + cmpcr_off, SYSCFG_CMPCR_RANSRC | SYSCFG_CMPCR_RAPSRC);
value <<= SYSCFG_CMPCR_RANSRC_SHIFT;
value |= mmio_read_32(SYSCFG_BASE + cmpcr_off);
mmio_write_32(SYSCFG_BASE + cmpcr_off, value | SYSCFG_CMPCR_SW_CTRL);
mmio_setbits_32(SYSCFG_BASE + cmpcr_off + CMPCR_CMPENCLRR_OFFSET, SYSCFG_CMPENSETR_MPU_EN);
}
#if STM32MP13
static int get_regu_max_voltage(void *fdt, int sdmmc_node,
const char *regu_name, uint32_t *regu_val)
{
int node;
const fdt32_t *cuint;
cuint = fdt_getprop(fdt, sdmmc_node, regu_name, NULL);
if (cuint == NULL) {
return -ENODEV;
}
node = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (node < 0) {
return -ENODEV;
}
cuint = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
if (cuint == NULL) {
return -ENODEV;
}
*regu_val = fdt32_to_cpu(*cuint);
return 0;
}
static bool sdmmc_is_low_voltage(uintptr_t sdmmc_base)
{
int ret;
int node;
void *fdt = NULL;
uint32_t regu_max_val;
if (fdt_get_address(&fdt) == 0) {
return false;
}
if (fdt == NULL) {
return false;
}
node = dt_match_instance_by_compatible(DT_SDMMC2_COMPAT, sdmmc_base);
if (node < 0) {
/* No SD or eMMC device on this instance, enable HSLV */
return true;
}
ret = get_regu_max_voltage(fdt, node, "vqmmc-supply", &regu_max_val);
if ((ret < 0) || (regu_max_val > 1800000U)) {
/*
* The vqmmc-supply property should always be present for eMMC.
* For SD-card, if it is not, then the card only supports 3.3V.
*/
return false;
}
return true;
}
static void enable_hslv_by_index(uint32_t index)
{
bool apply_hslv;
assert(index < HSLV_NB_IDX);
switch (index) {
case HSLV_IDX_SDMMC1:
apply_hslv = sdmmc_is_low_voltage(STM32MP_SDMMC1_BASE);
break;
case HSLV_IDX_SDMMC2:
apply_hslv = sdmmc_is_low_voltage(STM32MP_SDMMC2_BASE);
break;
default:
apply_hslv = true;
break;
}
if (apply_hslv) {
mmio_write_32(SYSCFG_BASE + SYSCFG_HSLVEN0R + index * sizeof(uint32_t), HSLV_KEY);
}
}
#endif
static void enable_high_speed_mode_low_voltage(void)
{
#if STM32MP13
uint32_t idx;
for (idx = 0U; idx < HSLV_NB_IDX; idx++) {
enable_hslv_by_index(idx);
}
#endif
#if STM32MP15
mmio_write_32(SYSCFG_BASE + SYSCFG_IOCTRLSETR,
SYSCFG_IOCTRLSETR_HSLVEN_TRACE |
SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI |
SYSCFG_IOCTRLSETR_HSLVEN_ETH |
SYSCFG_IOCTRLSETR_HSLVEN_SDMMC |
SYSCFG_IOCTRLSETR_HSLVEN_SPI);
#endif
}
static void stm32mp1_syscfg_set_hslv(void)
{
uint32_t otp_value;
uint32_t vdd_voltage;
bool product_below_2v5;
/*
* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI
* and TRACE. Needed above ~50MHz and conditioned by AFMUX selection.
* It could be disabled for low frequencies or if AFMUX is selected
* but the function is not used, typically for TRACE.
* If high speed low voltage pad mode is node enable, platform will
* over consume.
*
* WARNING:
* Enabling High Speed mode while VDD > 2.7V
* with the OTP product_below_2v5 (OTP 18, BIT 13)
* erroneously set to 1 can damage the SoC!
* => TF-A enables the low power mode only if VDD < 2.7V (in DT)
* but this value needs to be consistent with board design.
*/
if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) {
panic();
}
product_below_2v5 = (otp_value & HW2_OTP_PRODUCT_BELOW_2V5) != 0U;
/* Get VDD supply */
vdd_voltage = dt_get_pwr_vdd_voltage();
/* Check if VDD is Low Voltage */
if (vdd_voltage == 0U) {
WARN("VDD unknown\n");
} else if (vdd_voltage < 2700000U) {
enable_high_speed_mode_low_voltage();
if (!product_below_2v5) {
INFO("Product_below_2v5=0: HSLVEN protected by HW\n");
}
} else {
if (product_below_2v5) {
ERROR("Product_below_2v5=1:\n");
ERROR("\tHSLVEN update is destructive,\n");
ERROR("\tno update as VDD > 2.7V\n");
panic();
}
}
}
void stm32mp1_syscfg_init(void)
{
#if STM32MP15
uint32_t bootr;
/*
* Interconnect update : select master using the port 1.
* LTDC = AXI_M9.
*/
mmio_write_32(SYSCFG_BASE + SYSCFG_ICNR, SYSCFG_ICNR_AXI_M9);
/* Disable Pull-Down for boot pin connected to VDD */
bootr = mmio_read_32(SYSCFG_BASE + SYSCFG_BOOTR) &
SYSCFG_BOOTR_BOOT_MASK;
mmio_clrsetbits_32(SYSCFG_BASE + SYSCFG_BOOTR, SYSCFG_BOOTR_BOOTPD_MASK,
bootr << SYSCFG_BOOTR_BOOTPD_SHIFT);
#endif
stm32mp1_syscfg_set_hslv();
stm32mp1_syscfg_enable_io_compensation_start();
}
void stm32mp1_syscfg_enable_io_compensation_start(void)
{
/*
* Activate automatic I/O compensation.
* Warning: need to ensure CSI enabled and ready in clock driver.
* Enable non-secure clock, we assume non-secure is suspended.
*/
clk_enable(SYSCFG);
mmio_setbits_32(SYSCFG_BASE + CMPCR_CMPENSETR_OFFSET + SYSCFG_CMPCR,
SYSCFG_CMPENSETR_MPU_EN);
#if STM32MP13
mmio_setbits_32(SYSCFG_BASE + CMPCR_CMPENSETR_OFFSET + SYSCFG_CMPSD1CR,
SYSCFG_CMPENSETR_MPU_EN);
mmio_setbits_32(SYSCFG_BASE + CMPCR_CMPENSETR_OFFSET + SYSCFG_CMPSD2CR,
SYSCFG_CMPENSETR_MPU_EN);
#endif
}
void stm32mp1_syscfg_enable_io_compensation_finish(void)
{
enable_io_comp_cell_finish(SYSCFG_CMPCR);
#if STM32MP13
enable_io_comp_cell_finish(SYSCFG_CMPSD1CR);
enable_io_comp_cell_finish(SYSCFG_CMPSD2CR);
#endif
}
void stm32mp1_syscfg_disable_io_compensation(void)
{
clk_enable(SYSCFG);
/*
* Deactivate automatic I/O compensation.
* Warning: CSI is disabled automatically in STOP if not
* requested for other usages and always OFF in STANDBY.
* Disable non-secure SYSCFG clock, we assume non-secure is suspended.
*/
disable_io_comp_cell(SYSCFG_CMPCR);
#if STM32MP13
disable_io_comp_cell(SYSCFG_CMPSD1CR);
disable_io_comp_cell(SYSCFG_CMPSD2CR);
#endif
clk_disable(SYSCFG);
}
/*
* @brief Get silicon revision from SYSCFG registers.
* @retval chip version (REV_ID).
*/
uint32_t stm32mp1_syscfg_get_chip_version(void)
{
return (mmio_read_32(SYSCFG_BASE + SYSCFG_IDC) &
SYSCFG_IDC_REV_ID_MASK) >> SYSCFG_IDC_REV_ID_SHIFT;
}
/*
* @brief Get device ID from SYSCFG registers.
* @retval device ID (DEV_ID).
*/
uint32_t stm32mp1_syscfg_get_chip_dev_id(void)
{
return mmio_read_32(SYSCFG_BASE + SYSCFG_IDC) & SYSCFG_IDC_DEV_ID_MASK;
}
#if STM32MP13
void stm32mp1_syscfg_boot_mode_enable(void)
{
mmio_setbits_32(SYSCFG_BASE + SYSCFG_BOOTCR, SYSCFG_BOOTCR_BMEN);
}
void stm32mp1_syscfg_boot_mode_disable(void)
{
mmio_clrbits_32(SYSCFG_BASE + SYSCFG_BOOTCR, SYSCFG_BOOTCR_BMEN);
}
#endif