arm-trusted-firmware/bl31/ehf.c

341 lines
9.7 KiB
C

/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Exception handlers at EL3, their priority levels, and management.
*/
#include <assert.h>
#include <cpu_data.h>
#include <debug.h>
#include <ehf.h>
#include <interrupt_mgmt.h>
#include <platform.h>
/* Output EHF logs as verbose */
#define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__)
#define EHF_INVALID_IDX (-1)
/* For a valid handler, return the actual function pointer; otherwise, 0. */
#define RAW_HANDLER(h) \
((ehf_handler_t) ((h & _EHF_PRI_VALID) ? (h & ~_EHF_PRI_VALID) : 0))
#define PRI_BIT(idx) (((ehf_pri_bits_t) 1) << idx)
/*
* Convert index into secure priority using the platform-defined priority bits
* field.
*/
#define IDX_TO_PRI(idx) \
((idx << (7 - exception_data.pri_bits)) & 0x7f)
/* Check whether a given index is valid */
#define IS_IDX_VALID(idx) \
((exception_data.ehf_priorities[idx].ehf_handler & _EHF_PRI_VALID) != 0)
/* Returns whether given priority is in secure priority range */
#define IS_PRI_SECURE(pri) ((pri & 0x80) == 0)
/* To be defined by the platform */
extern const ehf_priorities_t exception_data;
/* Translate priority to the index in the priority array */
static int pri_to_idx(unsigned int priority)
{
int idx;
idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits);
assert((idx >= 0) && (idx < exception_data.num_priorities));
assert(IS_IDX_VALID(idx));
return idx;
}
/* Return whether there are outstanding priority activation */
static int has_valid_pri_activations(pe_exc_data_t *pe_data)
{
return pe_data->active_pri_bits != 0;
}
static pe_exc_data_t *this_cpu_data(void)
{
return &get_cpu_data(ehf_data);
}
/*
* Return the current priority index of this CPU. If no priority is active,
* return EHF_INVALID_IDX.
*/
static int get_pe_highest_active_idx(pe_exc_data_t *pe_data)
{
if (!has_valid_pri_activations(pe_data))
return EHF_INVALID_IDX;
/* Current priority is the right-most bit */
return __builtin_ctz(pe_data->active_pri_bits);
}
/*
* Mark priority active by setting the corresponding bit in active_pri_bits and
* programming the priority mask.
*
* This API is to be used as part of delegating to lower ELs other than for
* interrupts; e.g. while handling synchronous exceptions.
*
* This API is expected to be invoked before restoring context (Secure or
* Non-secure) in preparation for the respective dispatch.
*/
void ehf_activate_priority(unsigned int priority)
{
int idx, cur_pri_idx;
unsigned int old_mask, run_pri;
pe_exc_data_t *pe_data = this_cpu_data();
/*
* Query interrupt controller for the running priority, or idle priority
* if no interrupts are being handled. The requested priority must be
* less (higher priority) than the active running priority.
*/
run_pri = plat_ic_get_running_priority();
if (priority >= run_pri) {
ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
run_pri, priority);
panic();
}
/*
* If there were priority activations already, the requested priority
* must be less (higher priority) than the current highest priority
* activation so far.
*/
cur_pri_idx = get_pe_highest_active_idx(pe_data);
idx = pri_to_idx(priority);
if ((cur_pri_idx != EHF_INVALID_IDX) && (idx >= cur_pri_idx)) {
ERROR("Activation priority mismatch: req=0x%x current=0x%x\n",
priority, IDX_TO_PRI(cur_pri_idx));
panic();
}
/* Set the bit corresponding to the requested priority */
pe_data->active_pri_bits |= PRI_BIT(idx);
/*
* Program priority mask for the activated level. Check that the new
* priority mask is setting a higher priority level than the existing
* mask.
*/
old_mask = plat_ic_set_priority_mask(priority);
if (priority >= old_mask) {
ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n",
priority, old_mask);
panic();
}
/*
* If this is the first activation, save the priority mask. This will be
* restored after the last deactivation.
*/
if (cur_pri_idx == EHF_INVALID_IDX)
pe_data->init_pri_mask = old_mask;
EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data));
}
/*
* Mark priority inactive by clearing the corresponding bit in active_pri_bits,
* and programming the priority mask.
*
* This API is expected to be used as part of delegating to to lower ELs other
* than for interrupts; e.g. while handling synchronous exceptions.
*
* This API is expected to be invoked after saving context (Secure or
* Non-secure), having concluded the respective dispatch.
*/
void ehf_deactivate_priority(unsigned int priority)
{
int idx, cur_pri_idx;
pe_exc_data_t *pe_data = this_cpu_data();
unsigned int old_mask, run_pri;
/*
* Query interrupt controller for the running priority, or idle priority
* if no interrupts are being handled. The requested priority must be
* less (higher priority) than the active running priority.
*/
run_pri = plat_ic_get_running_priority();
if (priority >= run_pri) {
ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
run_pri, priority);
panic();
}
/*
* Deactivation is allowed only when there are priority activations, and
* the deactivation priority level must match the current activated
* priority.
*/
cur_pri_idx = get_pe_highest_active_idx(pe_data);
idx = pri_to_idx(priority);
if ((cur_pri_idx == EHF_INVALID_IDX) || (idx != cur_pri_idx)) {
ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n",
priority, IDX_TO_PRI(cur_pri_idx));
panic();
}
/* Clear bit corresponding to highest priority */
pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1);
/*
* Restore priority mask corresponding to the next priority, or the
* one stashed earlier if there are no more to deactivate.
*/
idx = get_pe_highest_active_idx(pe_data);
if (idx == EHF_INVALID_IDX)
old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask);
else
old_mask = plat_ic_set_priority_mask(priority);
if (old_mask >= priority) {
ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n",
priority, old_mask);
panic();
}
EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data));
}
/*
* Top-level EL3 interrupt handler.
*/
static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
int pri, idx, intr, intr_raw, ret = 0;
ehf_handler_t handler;
/*
* Top-level interrupt type handler from Interrupt Management Framework
* doesn't acknowledge the interrupt; so the interrupt ID must be
* invalid.
*/
assert(id == INTR_ID_UNAVAILABLE);
/*
* Acknowledge interrupt. Proceed with handling only for valid interrupt
* IDs. This situation may arise because of Interrupt Management
* Framework identifying an EL3 interrupt, but before it's been
* acknowledged here, the interrupt was either deasserted, or there was
* a higher-priority interrupt of another type.
*/
intr_raw = plat_ic_acknowledge_interrupt();
intr = plat_ic_get_interrupt_id(intr_raw);
if (intr == INTR_ID_UNAVAILABLE)
return 0;
/* Having acknowledged the interrupt, get the running priority */
pri = plat_ic_get_running_priority();
/* Check EL3 interrupt priority is in secure range */
assert(IS_PRI_SECURE(pri));
/*
* Translate the priority to a descriptor index. We do this by masking
* and shifting the running priority value (platform-supplied).
*/
idx = pri_to_idx(pri);
/* Validate priority */
assert(pri == IDX_TO_PRI(idx));
handler = RAW_HANDLER(exception_data.ehf_priorities[idx].ehf_handler);
if (!handler) {
ERROR("No EL3 exception handler for priority 0x%x\n",
IDX_TO_PRI(idx));
panic();
}
/*
* Call registered handler. Pass the raw interrupt value to registered
* handlers.
*/
ret = handler(intr_raw, flags, handle, cookie);
return ret;
}
/*
* Initialize the EL3 exception handling.
*/
void ehf_init(void)
{
unsigned int flags = 0;
int ret __unused;
/* Ensure EL3 interrupts are supported */
assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3));
/*
* Make sure that priority water mark has enough bits to represent the
* whole priority array.
*/
assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8));
assert(exception_data.ehf_priorities);
/*
* Bit 7 of GIC priority must be 0 for secure interrupts. This means
* platforms must use at least 1 of the remaining 7 bits.
*/
assert((exception_data.pri_bits >= 1) || (exception_data.pri_bits < 8));
/* Route EL3 interrupts when in Secure and Non-secure. */
set_interrupt_rm_flag(flags, NON_SECURE);
set_interrupt_rm_flag(flags, SECURE);
/* Register handler for EL3 interrupts */
ret = register_interrupt_type_handler(INTR_TYPE_EL3,
ehf_el3_interrupt_handler, flags);
assert(ret == 0);
}
/*
* Register a handler at the supplied priority. Registration is allowed only if
* a handler hasn't been registered before, or one wasn't provided at build
* time. The priority for which the handler is being registered must also accord
* with the platform-supplied data.
*/
void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler)
{
int idx;
/* Sanity check for handler */
assert(handler != NULL);
/* Handler ought to be 4-byte aligned */
assert((((uintptr_t) handler) & 3) == 0);
/* Ensure we register for valid priority */
idx = pri_to_idx(pri);
assert(idx < exception_data.num_priorities);
assert(IDX_TO_PRI(idx) == pri);
/* Return failure if a handler was already registered */
if (exception_data.ehf_priorities[idx].ehf_handler != _EHF_NO_HANDLER) {
ERROR("Handler already registered for priority 0x%x\n", pri);
panic();
}
/*
* Install handler, and retain the valid bit. We assume that the handler
* is 4-byte aligned, which is usually the case.
*/
exception_data.ehf_priorities[idx].ehf_handler =
(((uintptr_t) handler) | _EHF_PRI_VALID);
EHF_LOG("register pri=0x%x handler=%p\n", pri, handler);
}